Specifying fonts

JpGraph supports both a set of built in bit-mapped font as well as True Type Fonts. For scale values on axis it is strongly recommended that you just use the built in bitmap fonts for the simple reason that they are, for most people, easier to read (they are also quicker to render). Try to use TTF only for headlines and perhaps the title for a graph and it’s axis. By default the TTF will be drawn with anti-aliasing turned on.

Fonts are generally specified with three parameters

1. Font family

2. Font style

3. Font size

In the call to method SetFont(). If no specified style is dsupplied then the style will default to normal style (FS_STYLE) , size has default value of 12pt.

Built in bitmapped fonts

Built in fonts are chosen by using one of the font families

· FF_FONT0 (small size, does not support bold style)

· FF_FONT1 (normal size)

· FF_FONT2 (large size)

Built in fonts only supports style FS_NORMAL and FS_BOLD (and in the case of FF_FONT0 only FS_NORMAL) trying to specify an unsupported combination for built in fonts will not give an error but will have no effect.

Note: To support backward compatibility with pre-1.2 bitmap fonts might also be specified with FONT0, FONT1, FONT2 (note the missing prefix FF_). However these specifications are deprecated as of 1.2. And usage of these will be a critical error in the next major release. It is strongly suggested that you use the new naming conventions since that is designed to harmonise with the TTF support.

The size parameter has no meaning for built in fonts and will be ignored. The size is implicitly set by choosing the corresponding font family .

Some examples of how to specify the built in fonts

SetFont(FF_FONT1,FS_BOLD);

SetFont(FF_FONT1,FS_BOLD,12);
// Size 12 is ignored

SetFont(FONT1);

// Deprecated!

SetFont(FF_FONT2);

// Use built in FONT1 using default style.

SetFont(FF_FONT0,FS_BOLD);
// FONT0 does not support bold style, will be ignored

True Type Fonts

Before you can start using True Type Fonts you need to make sure that

1. You have downloaded the TTF files. Due to it’s size they are in a separate package from the JpGraph script code.

2. The TTF_DIR constant in jpgraph.php points to the directory where the font files may be found.

3. You installation of PHP supports TTF (most should do)

By default JpGraph will look for fonts in directory “./TTF/”

In JpGraph 1.2 the font families and styles supported are listed in Table 1.

	Font family
	Font style

	PHP Constant
	Real name
	FS_NORMAL
	FS_BOLD
	FS_BOLDITALIC
	FS_ITALIC

	FF_COURIER
	Courier new
	(
	(
	
	(

	FF_VERDANA
	Verdana
	(
	(
	
	(

	FF_TIMES
	Times New Roman
	(
	(
	(
	

	FF_HADWRT
	Lucida Handwriting
	(
	
	
	

	FF_COMIC
	Comic Sans
	(
	(
	
	

	FF_ARIAL
	Arial
	(
	(
	
	(

	FF_BOOK
	Book Antiqua
	(
	(
	(
	(

Table 1 Available combination of TTF font families and styles
The use of a an illegal combination will give a runtime error indicating the type of problem, e.g. “Style not supported for font family”. On additional thing to keep in mind when designing graphs is that even though TTF may look more appealing from an aesthetic point of view they are much more time consuming to render and also involves one additional disk access.

Some examples:

SetFont(FF_COURIER); // Courier normal 12 points

SetFont(FF_COURIER,FS_BOLD); // Courier bold 12 points

SetFont(FF_COMIC,FS_BOLD,16); // Comic Sans Serif, bold, 16 points

Adding new TTF fonts

If you have a particular favourite font which doesn’t come as default it is quite easy to add that font to JpGraph as an extension. There are basically 3 things you need to do:

1. Get the TTF file(s) and add it to your font directory. You need separate files for each of the styles you want to support. These different files uses the following naming conventions:
Normal font file
= <basefilename>
Bold font file
= <basefilename>”bd”
Bold italic file
= <basefilename>”bi”
Italic file

= <basefilename>”i”

2. Define a new constant FF_xxxxx in jpgraph.php which names your font (at the top of the file)

3. Update Class TTF constructor in jpgraph.php with the mapping between your new constant and the <basefilename>

That’s it!

Anti-aliased line support

From version 1.2 JpGraph supports drawing of anti-aliased lines. There are a few caveats in order to use this which is discussed in this section.

Note that anti-alising will not be used for either horizontal, vertical or 45 degree lines since they are by their nature are sampled at adequate rate.

Enabling anti-aliased lines

Anti-aliased lines are enabled by calling the method SetAntiAliasing() in the Image class, so for example you would normally make the call

$graph->img->SetAntiAliasing()

to enable this feature. The anti-aliasing for lines works by “smoothing” out the edges on the line by using a progressive scale of colors interpolated between the background color and the line color. Hence the line drawing algorithm needs to know the background color. By default the line drawing algorithm looks at the first point of the line to see what the underlying color is and then uses this as the background color. This might not always give the best result since you might have several lines starting from the same point. Then the first line will correctly read the background color but the second line (which starts from the same point) will only see the previous lines color and not the real background color.

To solve this problem you can specify the background color as a parameter in the call to SetAntiAliasing() method. This will then be used for all subsequent lines. For example a call would say

$graph->img->SetAntiAliasing(“white”);

to use “white” as the background color regardless what the color at start position of the line is. An example of where you must use this is for “spider-plots” since the axis for the spider plot all overlap in the center.

Anti-aliased gotchas

There are also a couple of potential limitations (or gotchas) you probably would like to keep in mind when using anti-aliased lines

1. Anti-aliases lines are much slower then the normal lines, roughly 5 times slower. Remember that the whole line-drawing algorithm is implemented in PHP since the underlying graph library (GD) doesn’t support anti-aliased lines.

2. Anti-aliased lines uses up more of the available color-palette. The exact number of colors used is dependent on the line-angle (number of lines with different angles uses more colors). Hence it might not be possible to use anti-aliasing with color-gradient fill since the number of available colors in the palette might not be enough. The color gradient is limited to use 100 color bands between the two colors. A normal palette can keep around 256 colors (I’m not 100% sure of the exact format used in the JPG, PNG, or GIF standards)

3. All anti-aliased line should have the same background color if the color is specified in the call to SetAntiAliasing(). Otherwise only the part of the line that covers the specified background color will be anti-aliased. The same goes for lines where the color is automatically determined but here each line may have its own background.

4. Anti-aliased lines will ignore the line width specified. They will always have a width of roughly 1.

