
1 Introduction

1.1 Version
This manual covers version 1.1 of JpGraph. A 2D graph plotting library for PHP 4.02
and above.
Note that this library will not work with versions prior to PHP 4.02 due to extension
in the object model that is used in this library.

1.2 Features
This is a truly OO graph library which makes it easy to both draw a “quick and dirty”
graph with a minimum of code and quite complex graphs which requires a very fine
grain of control. The library tries to assign sensible default values for most parameters
hence making the learning curve quite flat since for most of the time very few
commands is required to draw graphs with a pleasing esthetical look.

Some highlights of available features are
?? Flexible scales, supports text-lin, text-log, lin-lin, lin-log, log-lin and log-log
?? Supports both PNG, GIF and JPG graphic formats. Note that the available formats

are dependent on the specific PHP installation where the library is used.
?? Supports caching of generated graphs to lessen burden of a HTTP server.
?? Intelligent autoscaling which gravitates towards esthetical values, i.e. multiples of

2:s and 5:s
?? Fully supports manual scaling, with fine grain control of position of ticks
?? User specified grace for autoscaling
?? Supports up to two different y-scale, it is possible to have different left and right

y-scale and add plots to both
?? Supports, line-plots, filled line-plots, accumulated line-plots, bar plots,

accumulated bar plots, grouped bar plots, error plots, line error plots, scatter plots,
impuls plots, spider (a.k.a. Web) plots and pie charts.

?? Supports unlimited number of plots in each graph, makes it easy to compose
complex graph which consists of several plot types

?? User specified position of axis
?? Supports color gradient fill in seven styles
?? Designed as a flexible OO framework which makes it easy to add new types of

plots
?? Supports automatic legend generation
?? Supports both vertical and horizontal grids
?? Supports anti-alising of lines
?? Supports rotation of linear graphs
?? More then 400 named colors
?? Designed modularly – you don’t have to include code which isn’t used

In addition to these high level features the library has been designed to be orthogonal
and very coherent in its’ naming convention. For example, to specify color each
object (i.e. axis, grids, texts, titles etc) within the graph implements the method
SetColor() with the same signature.

1.3 Planned future addition
All the following features, which have not been marked as tentatively, will be added.
The timeframe for these versions are:

?? Version 1.3 Q2 2001
?? Version 2.0 Q4 2001

No time frames have been determined for version 2.x and above. If you like these
timeframes to move forward get involved in the development. Changes, bugfixes and
additions are always welcome.

For the latest upate on planned future version see the web-site for JpGraph at
www.aditus.nu/jpgraph/

1.4 Known bugs and omissions

?? Rounding errors. Some combination of image size and scale span might on some
points display a one-pixel difference between scale labels and plot points. This is
for all practical purposes not visually detectable. A walkthrough of all
computation routines within the library will be necessary to assure that they are all
rounded/truncated the exact same way.

1.5 Acknowledgements
The idea for writing this library grew out of my own needs for a high quality graph
drawing library for PHP4. Before reinventing the wheel I searched the net to see if
there where anything already available that would meet my needs. When searching I
found three other PHP graph plotting libraries:

1. “chart 0.3” http://quimby.gnus.org/circus/chart/chart-0.3.tar.gz, by Lars Magne

Ingebrigtsen
2. “ykcee.php”, http://ykcee.sourceforge.net
3. “phplot.php”, http://www.phplot.com

All these libraries implements some fine graphic features but unfortunately none of
those completely fulfilled my needs either for available functionality (for example
none of these supported both two Y-scales, auto-scaling, and logarithmic scales), or
general flexibility, I especially needed the option of two Y -scales, which none of the
above packages supported. My own preference for design was closest to “chart 0.3”
so I started by fixing some small bugs in that package and adding some new features.
However I soon realized that to add all the features and flexibility I wanted to “chart
0.3” it would require a complete rewrite since the original design wasn’t flexible
enough, especially adding a second Y-scale would require a more flexible OO
architecture.

Since at the time I was also interested in giving PHP a try to see how well it would
support a fully object oriented design so I started designing this library. The library is
completely written from scratch but I have taken some ideas, especially the caching
feature from “chart 0.3” and implemented this.

I’m therefore thankful for those ideas. Any bugs and faults within the code are
completely my own.

1.6 Implementing an OO library in PHP4
In terms of OO support PHP is still at loss to Java, Eiffel or C++ but since it always
been my view that OO design is more a state of mind then of implementation details it
is still possible to arrive with a decent OO design even in PHP. One of the big
obstacles is probably the very different assigning semantics used by PHP as compared
to other OO languages since it is always copies of the object that is passed around by
default and not references. This took some time for me personally to get used to
(giving my own background in OO design in Java, Eiffel and C++).

There is also a bug (present in all versions <=4.04pl1) that makes it impossible to use
a reference to the ‘$this’ pointer in the constructor. This has an easy workaround by
adding an extra method, say Init(), which is called immediately after the constructor
and may safely use a reference to ‘$this’ pointer.

As an example of JpGraph’s OO features this is, to my knowledge, the only piece of
PHP code to fully implement the Observer pattern.

1.7 Getting the latest version
The latest version of jpgraph can always be found on http://www.aditus.nu/jpgraph/
The current version as of this writing is 1.2

Note. I keep a very simple version scheme to avoid the version number inflation that
seems to be going on, this means
1.x -> 1.x.1 Bug fix release for version 1.x
1.x -> 1.(x+1) Added functionality. Keeping backwards compatibility
1.x -> 2.0 Substantially new functionality which might break backward
compatibility

1.8 Reporting bugs and suggested improvements
Bug reports and suggestions are always welcome. I only ask you to make sure that
you read the requirements before submitting bugs and making sure you have an up to
date version of PHP4, the necessary graphic libraries etc. I will unfortunately not be
able to answer standard OO or PHP4 questions.

Please note that this library will not work with versions prior to PHP4.02.

Bug reports and suggestions should be sent to Jpgraph@aditus.nu

1.9 Software License
JpGraph 1.2 is released under GPL (GNU Public License 2.0)

1 Quick start on how to use JpGraph

1.1 Generating images with PHP
As a general rule each PHP which generates an image must be specified in a separate
file which is then called on in an tag reference. For example, the following
HTML excerpt includes the image generated by the PHP script in “fig1.php”

. . .

. . .

The library will automatically generate the necessary headers to be sent to the browser
to correctly recognize the data stream as an image of either PNG/GIF/JPEG format.

To get access to the library you will need to include at least two files, the base library
and one or more of the plot extensions. So for example if you want to do line plots the
top of your PHP file must have the lines:

<?php
include ("jpgraph.php");
include ("jpgraph_line.php");
. . .
// Code that uses the jpgraph library
. . .
?>

Note: You might also use the PHP directive requires(). The difference is subtle in that
include will only include the code if the include statement is actually excuted. While
require() will always be replaced by the file specified. See PHP documentation for
further explanation. For most practical purposes they are identical.

1.2 A first example

The following simple example draws a line graph consisting of 10 Y-values

<?php
include ("jpgraph.php");
include ("jpgraph_line.php");

$ydata = array(11,3,8,12,5,1,9,13,5,7);

// Create the graph. These two calls are always required
$graph = new Graph(300,200);
$graph->SetScale("textlin");

// Create the linear plot
$lineplot=new LinePlot($ydata);

// Add the plot to the graph
$graph->Add($lineplot);

// Display the graph
$graph->Stroke();
?>

Figure 1. PHP script for simple graph. (example1.php)

This script will generate the following graph

Figure 2. The simplest possible JpGraph

You might note a few things:
?? Both the X and Y axis have been automatically scaled. We will later on show how

you might control the autoscaling how it determines the number of ticks which is
displayed.

?? By default the Y-grid is displayed in a “soft” color
?? By default the image is bordered and the margins are slightly gray.
?? By default the 0 label on the Y-axis is not displayed

This is a perfect fine graph but we want might t o add a few things like
?? A title for the graph
?? Title for the axis
?? Increase the margins to account for the title of the axis

To handle this we just need to add a few more lines. (We only show the part of
example 1 we changed)

. . .

// Increase the margins (left,right,top,bottom)
$graph->img->SetMargin(40,20,20,40);

// Add graph and axis title
$graph->title->Set(“Example 2”);
$graph->xaxis->title->Set(“X-title”);
$graph->yaxis->title->Set(“Y-title”);

. . .

Figure 3. Example 2. Adding a graph title and axis title

The graph will now look like this

Figure 4. A graph with added titles.

Again a couple of things should be noted
?? A default font and size is used for the text
?? The default position for the title of the graph is to be centered at the top
?? The default position for the title of the x-axis is the far right and for the y-axis

centered and rotated in a 900 angle.

A nice change would now be to have all the titles in a bold font and the line plot a
little bit thicker and in blue color. Let’s do that

. . .
$graph->title->SetFont(FONT1_BOLD);
$graph->yaxis->title->SetFont(FONT1_BOLD);
$graph->xaxis->title->SetFont(FONT1_BOLD);

$lineplot->SetColor(“blue”);
$lineplot->SetWeight(2); // Two pixel wide
. . .

You might by now have noticed that you apply the same methods to different objects
within the graph. This is something that is a red line in this OO library. So far you
have seen that a graph has a title, an x-axis, an y-axis etc. In the reference section a
complete list of available objects and methods are listed. In almost most cases you
will learn about a new method, like SetColor(), which you could then apply to other
objects. As an example, let’s make the Y -axis red. As you might guess this is
accomplished by the line:

. . .
$graph->yaxis->SetColor(“red”);
. . .

Or perhaps making the Y-axis a little bit thicker (note that this will also affect the Y -
grid thickness)

. . .
$graph->yaxis->SetWeight(2);
. . .

As a final touch on this first example lets add a shadow to the frame surrounding the
image. By default this is switched off. This is done by adding the line

. . .
$graph->SetShadow();
. . .

Figure 5. The final appearance of the graph after changing the properties of the Y-axis and
adding a shadow to the frame.

1.3 Adding plot marks to line graphs
It might sometimes be desirable to highlight the data -points with marks in the
intersection between the given x and Y-coordinates. This is accomplished by
specifying the wanted plot mark type for the “mark” property of the line graph.

As of JpGraph 1.0 the following marks are available:

?? MARK_SQUARE, A filled square
?? MARK_UTRIANGLE, A upward pointing triangle
?? MARK_DTRIANGLE, A downward pointing triangle
?? MARK_DIAMOND, A diamond shape
?? MARK_CIRCLE, A non-filled circle.

Let’s add diamond marks to the graph in example 3 above. This is accomplished by adding the single
line

$lineplot->mark->SetType(MARK_DIAMOND);

The resulting graph is shown below

Figure 6. Line graph with plot marks in the intersections.

The colors of the marks will, if you don’t specify them explicitly, follow the line
color. Please note that if you want different colors for the marks and the line the call
to SetColor() for the marks must be done after the call to the line since the marks
color will always be reset to the lines color when you set the line.

1.4 Adding several plots to the same graph
What if we want to add a second plot to the graph we just produced? Well, this is
quite straightforward and just requires two step:

1. Create the second plot
2. Add it to the graph

To create the second plot we need some data (we could of course use the same data as
in example 1 but then we wouldn’t be able to see the new plot!)

The following lines show how to create the new plot and add it to the graph (we only
show the new lines – not the full script)

. . .
$ydata2 = array(1,19,15,7,22,14,5,9,21,13);
$lineplot2=new LinePlot($ydata2);
$lineplot2->SetColor("orange");
$lineplot2->SetWeight(2);
. . .
$graph->Add($lineplot2);
. . .

The graph resulting from these changes will look like

Figure 7. Adding several plots to the same graph.

You should now note that
?? The Y-scale has changed to accommodate the larger range of Y-values for the

second graph.
?? If you add several plots to the same graph they should contain the same number of

data points. This is not a requirement the graph will be automatically scaled to
accommodate the plot with the largest number of points but it will not look very
good since one of the plot end in the middle of the graph.

1.5 Adding a second Y -scale

As you saw in the preceding example you could add multiple plots to the same graph
and Y-axis. However what if the two plots you want to display in the graph has very
different ranges. One might for example have Y-values like above but the other might
have Y-values in the 100:s. Even though it is perfectly possible to add them as above
the graph with the smallest values will have a very low dynamic range since the scale
must accomplish the bigger dynamic range of the second plot.

The solution to this is to use a second Y-axis with a different scale and add the second
plot to this Y-axis instead. Let’s take a look at how that is accomplished.

First we need a nice data array with large values

. . .
$y2data = array(354,200,265,99,111,91,198,225,293,251);
. . .

Then we need to add a second linear Y axis to the graph

. . .
$graph->SetY2Scale("lin");
. . .

and finally we create a new line plot and add that to the second Y-axis. Note that we
here use a new method AddY2() since we want this plot to be added to the second Y-
axis (version 1.0 of jpgraph only supports two different Y-axis and Y-scales.)

. . .
$lineplot2=new LinePlot($y2data);
$graph->AddY2($lineplot2);
. . .

To make the graph a little bit more esthetical pleasing we use different colors for the
different plots and let the two different Y -axis get the same colors as the plots.

. . .
$lineplot2->SetColor("orange");
$lineplot2->SetWeight(2);
$graph->SetColor("orange");
. . .

The final graph will now look like this:

Figure 8. A graph with two different Y-axis and a plot for each Y-axis

1.6 Adding a legend to the plot

To know what different plots stand for it is custom to add a legend to the graph that
explains what each plot represents. This is very easy to do. We only need to specify
the legend text for each plot and most likely where we want the legend to be
displayed. Let’s first see what we get with the default settings so we just add the text
we want associated with each plot, let’s say “Plot 1” and “Plot 2”. This is done by the
following two added lines

. . .
$lineplot->Legend->Set(“Plot 1”);
$lineplot2->Legend->Set(“Plot 2”);
. . .

If we do this we get a resulting graph as

Figure 9. Graph with a legend

As you can see the legend gets automatically sized depending on how many plots
there are that have legend texts to display. By default it is placed with it’s top right
corner close to the upper right edge of the image. Depending on the image you might
want to adjust this or you might want to add a larger margin which is big enough to
accompany the legend. Let’s do both. First we increase the right margin and then we
place the legend so that it is roughly centred. We will also enlarge the overall image
so the plot area doesn’t get to squeezed. (We don’t show the new values for the
margins just the new method to position the legend.)

. . .
$graph->legend->Pos(0.05,0.5,"right","center");
. . .

This will then generate the following graph

Figure 10. Graph with adjusted legend

The above method deserves some explanation since it might not be obvious. You
specify the position as percentage of the overall width and height of the entire image.
This makes it possible for you to resize the image within disturbing the relative
position of the legend. We will later see that the same method is just to place arbitrary
text in the image.

To give added flexibility one must also specify to what edge of the legend the position
given should be relative to. In the example above we have specified “right” edge on

the legend for the for the X-axis meaning that the distance between the right edge of
the legend and the right edge of the image is 5% of the images entire width.

Allowed values for the X-position are [“left” ,”center”, “right”], and for the Y-
position [“top”,”center”].

By default the text in the legend are stacked on top of each other. The other possibility
to layout the legend is horizontally, i.e. the text is place horizontally after each other.
You decide which way you want to have the legend by a call to the method
“SetLayout($layout)” allowed values for $layout are

?? LEGEND_HOR
?? LEGEND_VERT

Lets illustrate this by changing the legend in the preceding example to use horizontal
layout instead and place the legend at the bottom of the image. This is accomplished
by the lines

. . .
$graph->img->SetMargin(40,40,20,70);
. . .
$graph->legend->SetLayout(LEGEND_HOR);
$graph->legend->Pos(0.5,0.85,"center","center");
. . .

Figure 11. Plot with alternative layout of legend.

1.7 Using the “Step style” to render line plots
Step style refers to an alternate way of rendering line plots by not drawin a direct line
between two adjacent points but rather draw two segements. The first segment being a
horizontal line to the next X-value and then a vertical line from that point to the crrect
Y-value. This is perhaps easier demonstrated by an example.

You specify that you want the plot to ber rendered with this style by calling the
method SetStepStyle() as

. . .
$lineplot1->SetStepStyle()
. . .

For example, the following graph can be generated:

Figure 12. Example of lineplot with the "step style"

1.8 Using a logarithmic scale
Using a logarithmic scale requires you to include the logarithmic add on module in
“jpgraph_log.php”. So you must have the line include(“jpgraph_log.php”) on the top
of your code. To Illustrate how to use a logarithmic scale let’s make the right Y scale
in the previous example a logarithmic scale. This is done by the line

. . .
$graph->SetY2Scale("log");
. . .

The resulting graph will then be as illustrated below

Figure 13. Graph with a logarithmic Y2 scale.

If you also wanted the normal (left) Y scale to be logarithmic you would have had to
change the SetScale() method call to

. . .
$graph->SetScale("textlog");
. . .

1.9 Using different combination of scales
As you saw in the previous example it is possible to use different types of scales. The
supported types are

?? Linear scale. Both X and Y axis
?? Logarithmic scale. Both X and Y axis
?? Text scale. Only on X axis

Any combination of these may be used. Linear and logarithmic scales are pretty
straightforward. The text scale might deserve some explanation. The easiest way to
think of the text scale is as a linear scale consisting of only natural numbers, i.e.
0,1,2,3,4,… . This scale is used when you just have a number of Y-values you want to
plot in a consecutive order and don’t care about the X-values. For the above example
it will also work fine to use a linear X-scale (try it!). However, the scale is now
treated as consisting or real numbers so the autoscaling, depending on the size of the
image an the number of data points, might decide to display other labels then the
natural numbers., i.e. a label might be 2.5 say. This is not going to happen if you use a
text scale.

If no X-scale is given the whole numbers in consecutive order will be used as X-
coordinates of the supplied Y-points as displayed in all the previous examples.

To specify which combination of X and Y scales you want to use a parameter is
passed in the SetScale() method of the graph. The following values are allowed

?? “linlin” Linear X, Linear Y
?? “linlog” Linear X, Log Y
?? “textlin” Text X, Linear Y
?? “textog” Text X, Log Y
?? “loglin” Log X, Linear Y
?? “loglog” Log x, Log Y

So for example to specify a Text X scale and Log Y scale you will call

$graph->SetScale(“textlog”);

To specify the Y2 axis you used use “ha lf” of the parameter string, i.e to specify a
linear Y2 scale you call

$graph->SetY2Scale(“lin”)

Note. The behaviour of specifying “Text” for a Y-scale is undefined and might even
blow up your server…

Specifying a log scale for the normal Y-axis will then generate the following image

Figure 14. Using different Y and Y2 scales.

1.10 Adding more gridlines to the plot
By default only the Y-axis have a grid and then only on major ticks, i.e. ticks which
have a label. It is of course possible to change this. Both the X , Y and Y2 can have a
grid. It is also possible to let the gridlines also be drawn on the minor tick marks, i.e.
ticks without a label. Lets see how we can apply this to the graph above.

The grid is modified by accessing the xgrid (or ygrid) component of the graph. So to
disply minor grid lines for the Y graph we make the call

$graph->ygrid->Show(true,true);

The first parameter determines if the grid should be displayed at all and the second
parameter determines whether or not the minor grid lines should be displayed.

If you instead wanted the gridlines to be displayed for the Y2 axis instead you would
call

$graph->y2grid->Show(true,true);

Note. In general it is not a good idea to display both the Y and Y2 gridlines since the
resulting image becomes difficult to read for a viewer.

We can also enable the X-gridlines with the call

$graph->xgrid->Show(true,false);

The resulting image will now look like

Figure 15. Graph with both X and Y gridlines.

Here we might show a nice feature of jpgraph. Since the Y (and Y2) scales first label
(1 and 10) is quite close to the X-labels we might want to not display the first tick
label. This can be done with a call
To the method SupressFirst() on the Tick object in the scale for each axis as

$graph->yaxis->scale->ticks->SupressFirst();
$graph->y2axis->scale->ticks->SupressFirst();

The graph will now look as

Figure 16. Graph with the first tick marks on the Y-axis suppressed.

1.11 Specifying the labels for X-axis
You might want to have specific labels you want to use for the X-axis when this has
been specified as a “text” scale. In the previous example each Y-point might represent
a specific measurement for each of the first 10 month. We might then want to display
the name of the months as X-scale. This can be done as follows.

. . .
$datax=array("Jan","Feb","Mar","Apr","Maj","Jun","July",”aug”,"Sep","Oct");
$graph->xaxis->SetTickLabels($datax);
. . .

This will then result in the following graph

Figure 17. Graph with specified labels for each tick of the X-axis.

It is also perfectly legal to override the default labels for the Y (and Y2) axis in the
same way, however there is seldom need for that. Please note that the supplied labels
will be applied to each major tick label. If there are insufficient number of supplied
labels the non-existent positions will have empty labels.

1.12 Adjusting the ticks on a text scale
As can be seen in the previous example (9) the X-axis is slightly cluttered with the
labels very close to each other. We might rectify this by either enlarging the image or
just displaying every second tick label on the x-axis.

Specifying that we only want to print every second label on the axis is done by a call
to the method
SetTextTicks() as

$graph->xaxis->SetTextTicks(2);

There is one important thing to remember with this. The $datax array must be
adapted to only contain every second value as well! My reasoning behind this
design decision is that when you have many Y-values, perhaps a couple of hundred,
and only wants to have an X label on every 100 you shouldn’t have to specify all the
labels you don’t use.

So now we also change $datax to

$datax=array("Jan","Mar","Maj","July","Sep");

The resulting graph will now look more esthetical pleasing as

Figure 18. A graph with the X-ticks adjusted to only display every second Major tick.

1.13 Using filled line graphs
Using a filled line plot is not much different from using a normal line plot, in fact the
only difference is that you must call the method SetFillColor() on a normal line plot.
This will then fill the area under the line graph with the chosen color. So for example
plotting a filled “orange” line plot you would add the line

. . .
$lineplot->SetFillColor(“orange”);
. . .

If you look closely at a line-plot you will see that the normal line is still there with the
color you specified with a previous call to SetColor(). IF you don’t wont this
bounding line to bee visible just set it to the same color as the fill.

Note 1. If you add multiple filled line plots to one graph make sure you add the one
with the highest Y-values first since it will otherwise overwrite the other plots and
they will not be visible. Plots are stroked in the order they are added to the graph, so
the graph you want front -most must be added last.

Note 2. When using legends with filled line plot the legend will show the fill color
and not the bounding line color.

1.14 Using accumulated line graphs
Accumulated line graphs are line graphs that are “stacked” on top of each other. That
is the values in the supplied data for the Y-axis is not the absolute value but rather the
relative value from graph below. For example if you have two line graphs with three
points each, say [3,7,5] and [6,9,7]. The first graph will be plotted on the absolute Y-
values [3,7,5] nut the second plot will be plotted at [3+6, 7+9, 5+7], hence the values
of the previous graphs will be used as offsets.

You may add any number of graphs together. If you want to use three line plots in an
accumulated line plot graph you write the following code

. . .
 .// First create the individual plots
$p1 = new LinePlot($datay_1);
$p2 = new LinePlot($datay_2);
$p3 = new LinePlot($datay_3);

// Then add them together to form a accumulated plot
$ap = new AccLinePlot(array($p1,$p2,$p3));

// Add the accumulated line plot to the graph
$graph->Add($ap);
. . .

You might of course also fill each line plot by adding the lines

. . .
$p1->SetFillColor(“red”);
$p2->SetFillColor(“blue”);
$p3->SetFillColor(“green”);
. . .

Using some appropriate data this might then give a graph perhaps like the one showed
in the figure below

Figure 19. Example of Accumulated filled line plot.

1.15 Using elementary bar graphs
Version 1.0 of jpgraph only supports 2D vertical bar plots. Before you can use any bar
plots you must make sure that you included the file “jpgraph_bar.php” in your script.

Using bar plots is quite straightforward and works in much the same way as line plots
which you are already familiar with from the previous examples. Assuming you have
a data array consisting of the values [12,8,19,3,10,5] and you want to display them as
a bar plot. This is the simplest way to do this:

. . .
$datay=array(12,8,19,3,10,5);
$bplot = new BarPlot($datay);
$graph->Add($bplot);
. . .

This will then display a graph as

Figure 20. The simplest form of bar graphs

To have the bars filled with a solid color you must invoke the SetFillColor() method
on the plot. So adding the line

$bplot->SetFillColor(“orange”);

will generate the following graph (no big surprise here..)

Figure 21. Filled bar graphs with default width.

You should note from the previous two graphs that bar graph gets automatically
centred when using as text x-scale. If you were to use a linear scale they would
instead start at the left edge of the X-axis.

1.16 Adjusting the width of the bars
By default the width of the bars are 40% of the major tick marks, i.e. the distance
between two labels on the x-axis. To change this you will have to invoke the method
SetWidth() with the percentage you would like to use instead, so for example having
the bar graphs fill out the complete graph we specify a width of 100% (i.e. 1.0)

$bplot->SetWidth(1.0)

This would then generate the graph

Figure 22. Bar graphs with a width of 100%

1.17 Using grouped bar graphs
These types of bars make is easy to group two or more bars together around each t ick.
The bars will be placed immediately beside each other and as a group centred on each
tick mark. An example will make this clear.

. . .
// Some data
$data1y=array(12,8,19,3,10,5);
$data2y=array(8,2,11,7,14,4);

// Create the bar plots
$b1plot = new BarPlot($data1y);
$b1plot->SetFillColor("orange");
$b2plot = new BarPlot($data2y);
$b2plot->SetFillColor("blue");

// Create the grouped bar plot
$gbplot = new GroupBarPlot(array($b1plot,$b2plot));

// ...and add it to the graPH
$graph->Add($gbplot);
. . .

The above script will now generate the following image

Figure 23. Example of grouped bars

There is no limit on the number of plots you may group other then purely visually, it
might be hard to see a couple of thousand plots gr ouped together…

If you use the SetWidth() method on the GroupBarPlot() this will affect the total
width used by all the added plots. Each individual bar width will be the same for all
added bars. The default width for grouped bar is 70%.

So calling

$gbplot->SetWidth(0.9);

would have the affect of generating the following image

Figure 24. Grouped bar when the width has been specified as 90%

1.18 Using accumulated bar graphs
The final varieties of group bars you can have are accumulated bars. They work in
much the same way as accumulated line plots described above. Each plot is stacked
on top of each other. An example makes this clear. Let’s use the same data as in the
two examples above but instead of grouping the bars we accumulate (or stack) them.
The code would be very similar (actually only one line has to change)

. . .
$abplot = new AccBarPlot(array($b1plot,$b2plot));
. . .

This would then generate the following graph.

Figure 25. Accumulated bar plot.

As you can see each plot is stacked on top of each other.

1.19 Using grouped accumulated bar graphs
It is perfectly possible to combine the previous bar types to have grouped
accumulated bar plots. This is done by just adding the different accumulated plots to a
group bar plot, for example the following code would do that

// Create all the 4 bar plots
$b1plot = new BarPlot($data1y);
$b1plot->SetFillColor("orange");
$b2plot = new BarPlot($data2y);
$b2plot->SetFillColor("blue");
$b3plot = new BarPlot($data3y);
$b3plot->SetFillColor("green");
$b4plot = new BarPlot($data4y);
$b4plot->SetFillColor("red");

// Create the accumulated bar plots
$ab1plot = new AccBarPlot(array($b1plot,$b2plot));
$ab2plot = new AccBarPlot(array($b3plot,$b4plot));

// Create the grouped bar plot
$gbplot = new GroupBarPlot(array($ab1plot,$ab2plot));

// ...and add it to the graPH
$graph->Add($gbplot);

The resulting plot would now look like

Figure 26. Combining both accumulated and grouped bar plots.

1.20 Using error plots
Error plots are used to visually indicate uncertain data points. This is done by for each
X value give both a minimum and a maximum Y-value.

The following example illustrates a simple error bar. We will have 5 points, so we
need 10 , so we need 10 Y-values. We also would like the error bars to be red and 2
pixels wide. All this is accomplished with (assuming the same basic graph as we used
in previous examples)

. . .
$errdatay = array(11,9,2,4,19,26,13,19,7,12);
$errplot=new ErrorPlot($errdatay);
$errplot->SetColor("red");
$errplot->SetWeight(2);

$graph->Add($errplot);
. . .

The resulting graph would now look like

Figure 27. A simple example of error plot.

You might notice that there is one displeasing esthetical quality of this graph. The X-
scale is just wide enough to just accompany the number of error bars and hence the
first bar is drawn on the Y-axis and the and last bar just at the edge of the plot area.
To adjust this you might call the SetCenter() method which will adjust the graph so
that each X-point is centred in the middle of each major scale tick. The following
example illustrates this

. . .
$errplot->SetCenter();
. . .

The resulting plot will now look more esthetic pleasing as

Figure 28. Centring an error graph with centred X-points within the major tick marks.

You might also note that the X-labels have also adjusted to this changed positioning,
as you probably would expect.

1.21 Using line error plots
A line error plot is an error plot with the addition that a line is drawn between the
average value of each error pair. You use this type of plot the exact same way you
would use an error plot. The only change is that you must instantiated an
ErrorLinePlot() instead and make sure you have included the “jpgraph_line.php”
since the line error plot makes use of the line plot class to stroke the line, hence

. . .
$elplot=new ErrorLinePlot($errdatay);
. . .

To control the various properties of the line drawn the “line” property of the error line
plot may be accessed. So, for example, if you want the line to be 2 pixels wide and
blue you would have to add the following two lines

. . .
$elplot->line->SetWeight(2);
$elplot->line->SetColor(“blue”);
. . .

If we add that line to the previous example we will get the following graph

Figure 29. Example of a line error plot.

You may of course add legends to none, one or both of the line types in the above
graph. So for example if we wanted the legend “Min/Max” for the red error bars and a
legend “Average” for the blue line you would have to add the lines

$errplot->SetLegend("Min/Max");
$errplot->line->SetLegend("Average");

The resulting graph will now look like (note we are using the default placement of the
legend box)

Figure 30. Line error plot with legends.

1.22 Combining different types of plots
It is perfectly legal to add several different plot types to the same graph. It is therefore
possible to mix line plots with (for example) filled bar graphs. What you should keep
in mind doing this is the order in which these plots are stroked to the image since a
later stroke will overwrite a previous one. All plots are stroked in the order you add
them, i.e. the first plot added will be stroked first. You can therefore control which
plot is placed in the background and which one is placed in the foreground.

Figure 31. Example of plot containing both line plot and filled line plot.

Figure 32. Example of graph with both line plots and bars.

Note the alignment of line plot together with bar plots. Line plots are aligned with the
left edge of the bar. This is a deliberate design decision since It looks (to me) less
esthetical to have the line centred in the middle of the bars.

Tip: If you want the graph with bars and line start at the very left edge just change the
x-axis to use a linear scale instead of a text scale.

1.23 Adding text to the graph
It is possible to add any number of text strings free ly positioned within the image.
Each text string you want to add to the graph must be added as an instance of the Text
class. The positions of the strings are given as percentage of the width/height of the
image. A small example will demonstrate this. Lets add a red text “This is a text” to
the middle by centring it horizontal in the graph, .

. . .
$txt=new Text(“This is a text”);
$txt->Pos(0.5,0.5,”centered”);
$txt->SetColor(“red”);
$graph->AddText($txt);
. . .

That’s it! You can also adjust the size and font of the text by using the “SetFont()”
method. All available text methods are described in the reference section of the
manual.

Note. The alignment you give tells how you want the layout algorithm to treat the
positions you supply.

It is also possible to have the text surrounded by a, possible, filled box. This is
accomplished by the SetBox() method.

. . .
$txt->SetBox(“white”,”black”,true);
. . .

The above line will add a textbox with a white background, black frame and a drop
shadow. This is illus trated in the figure below

Figure 33. Example of added text box “This is a text”.

1.24 Using scatter plots

Scatter plots are very simple; they plot a number of points specified by their X - and
Y-coordinate. Each point is stroked on the image with a mark as with lineplots.

Even though you would normally supply X -coordinates it is still perfectly possible to
use a text-scale for X-coordinates to just enumerate the points. This is especially
usefull when using the “Impuls” type of scatter plot as is shown below.

Scatter pots are created by including the jpgraph extension “jpgraph_scatter.php” and
then creating an instance of plot type of ScatterPlot(). To specify the mark you want
to use you access the mark with the instance variable “mark” in the scatter plot. The
default is to use an unfilled small circle. An example clarifies this.

include(“jpgraph_scatter.php”);
. . .
$sp1 = new ScatterPlot($datay, $datax);
. . .
$graph->Add($sp1);
. . .

Figure 34. Example of scatter plot with default marks.

To change the apperance of the marks you can both fill tem with a specified color and
you may also change their sze. Lets make the circle 10 pixels wide and filled with a
red color. This is done by the lines

$sp1->mark->SetType(MARK_FILLEDCIRCLE);
$sp1->mark->SetFillColor(“red”);
$sp1->mark->SetWidth(10);

The resulting plot will now become

Figure 35. Example of scatter plot with modified marks.

For a complete list of available methods for “marks” see the reference section “Class
PlotMark”.

1.25 Using impuls scatter plots
A final modification we can do to scatter plot is to change it to a “impuls” type plot.
This is simple a scatter plot with lines from the x-axis up to the mark. This type of
plot is often used in conjunction with illustration of digital signal analysis (hence the
name I’ve choosen).

This change is accomplished by calling the SetImpuls() method as in

. . .
$spl->SetImpuls();

An example plot (where we use a text X-scale) will now look like

Figure 36. Example of scatter plot with Impuls style.

You may specify the thickness and color for the impuls line with the methods
SetColor() and SetWeight() as in

. . .
$sp1->SetColor(“blue”);
$sp1->SetWeight(2);

The modified plot will then look like

Figure 37. Example of impuls scatter plot with blue impuls lines.

You may draw impuls graphs without any mark by specifying the mark type as (-1) .
That way only the impuls lines will be drawn. Applying this to the previous graph will
then give the result

. . .
$sp1->mark->SetType(-1);

Figure 38. Impuls scatter plot with no marks.

1.26 Using Pie Plots

Ince by now you would have a fairly good understanding on the principles you will be
pleased to find that Pie plots fit quite nicely in the previous framework.

To Use Pie plots you must inc lude (as usual) the base library and the pile plot
extension “jpgraph_pie.php” . Let’s show the simplest possible complete code for a
pie plot

<?php
include ("jpgraph.php");
include ("jpgraph_pie.php");

// Some data
$data = array(40,21,17,14,23);

// Create the Pie Graph. Note you may cach this by adding the
// ache file name as PieGraph(300,300,"SomCacheFileName")
$graph = new PieGraph(300,200);
$graph->SetShadow();

// Set A title for the plot
$graph->title->Set("Example 1 Pie plot");
$graph->title->SetFont(FONT1_BOLD);

// Create graph
$p1 = new PiePlot($data);
$graph->Add($p1);

// .. and finally stroke it
$graph->Stroke();
?>

The generated graph will the be

Figure 39. The simplest possible pie chart.

You may note a few thing

?? By default a set of standard color is used
?? By default the percentage for each slice is printed as a legend
?? By default the precision of the percent figures is to use one-decimal
?? By default the first slice always start at the horizontal axis (at 0 degree angle)
?? By default “Black” is used for lines.

The simplest addition we can do is now to add some explaining legends to what the
different pie-slices stand for. This is accomplished by the method Setlegends(), lets
name the legends after the months as an example by adding the line:

$p1->SetLegends(array("Jan","Feb","Mar","Apr","May"));

which will the generate the graph

Figure 40. Pie chart with a legend.

1.27 Changing size and position for the pie chart

Changing size and position for the pie plot is accomplished by specifyin the size and
position as percentage values. The size is changed by SetSize() which specifies the
radius of the plot in percentage of whatever is the smallest of width and height of the
image. The center of the pie is set by SetCenter(). An example of how to use these

methods are given in t he next section when we show how we can add several pie
charts to the same graph.

1.28 Adding several pie chart to the same graph

This is done completely analogues as with adding plots as we have seen before. Just
create some more Pie plots and use the Add() method to add them to the image.
One thing worth keeping in mind in regards to Legends. Since the pie graph only
maintain one legend all the legend texts you add will be added to that legend. It is
therefore most practical to use the same colors to mean the same things in each pie
plot.

As an example lets take the previous image and just make four copies of the same pie
plot just smaller so they fit within the image and place them evenly in a square, not
much real use but it’s getting late and I run out of imagination for new data….

I have also take the opportunity to set the size if the legend to the smallest font (with
a call to SetFont()) so I don’t have to make the image to large to fit all the plots.

However, we create the four plots with the lines

. . .
// Create plots
$size=0.13;
$p1 = new PiePlot($data);
$p1->SetLegends(array("Jan","Feb","Mar","Apr","May"));
$p1->SetSize($size);
$p1->SetCenter(0.25,0.32);
$p1->SetFont(FONT0);
$p1->title->Set("2001");

$p2 = new PiePlot($data);
$p2->SetSize($size);
$p2->SetCenter(0.65,0.32);
$p2->SetFont(FONT0);
$p2->title->Set("2002");

$p3 = new PiePlot($data);
$p3->SetSize($size);
$p3->SetCenter(0.25,0.75);
$p3->SetFont(FONT0);
$p3->title->Set("2003");

$p4 = new PiePlot($data);
$p4->SetSize($size);
$p4->SetCenter(0.65,0.75);
$p4->SetFont(FONT0);
$p4->title->Set("2004");

$graph->Add($p1);
$graph->Add($p2);
$graph->Add($p3);
$graph->Add($p4);

$graph->Stroke();

Note: We only set the legend for the first pie plot since we assume that the other plot
have the same meaning.

You may note that I also used the “title” property for each plot to assign each plot an
individual title. (You may also add other text to the graph by creating instances of
Class Text() and add them to the graph via the AddText() method in the PieGraph
class.)

The plot will now become

Figure 41. Example of adding several pie plots to the same graph.

1.29 Additional modifications to pie plots
Just a quick note on some additional modifications you might do to pie plots.

?? Hiding labels. You may hide the percentage labels for a plot by a call to the
method HideLabels()

?? Changing the colors of the labels by a call to SetFontColor()
?? Set precision of percentage figure with a call to method SetPrecision()
?? Setting different colors to pie then default by calling SetSliceColors()

The above are all methods in the PiePlot class. For a complete overview of all the
methods see the reference section.

1 Jpgraph reference

1.1 Conventions
All classes are documented with their private and public methods as well as their parents to clearly
show which methods have been overridden. Since PHP is not a strict typed language I have taken the
liberty of specifying each method with the type you would call it with to make it clearer what is
intended.

When properties are listed their Class (if any) are specified as a normal type. When arguments for
methods have default arguments they are specified.

An overview of available methods are given for each class in a table format. For each class that
extends another class the immediately parent class is also given for reference. Methods which are
overridden in a child class is indicated as strike-through in the parent class t o emphasise that the
method in the child is used.

1.2 Class overview
The class diagram below shows a simplified version of the overall (simplified) class hierarchy used in
JpGraph.

Graph

LinePlot

BarPlot

ErrorPlot

GroupBarPlot

AccLinePlot

AccBarPlot

LinearTicks

LogTicks

Axis

LinearScale

LogScale

ImageImgStreamCache

Text

Legend

Ticks

Plot

Uses

Extends

Abstract class

JpGraph 1.0 Simplified Class Hierarchy
ScatterPlot

SpiderPlot

SpiderGraph

SpiderAxis

SpiderGrid

FontProp

TTF

RGB

Last updated: 10 Mar 2001
By: Johan Persson

GraphGraph

LinePlotLinePlot

BarPlotBarPlot

ErrorPlotErrorPlot

GroupBarPlotGroupBarPlot

AccLinePlotAccLinePlot

AccBarPlotAccBarPlot

LinearTicksLinearTicks

LogTicksLogTicks

AxisAxis

LinearScaleLinearScale

LogScaleLogScale

ImageImageImgStreamCacheImgStreamCache

TextText

LegendLegend

TicksTicksTicks

PlotPlotPlot

Uses

Extends

Abstract class

Uses

Extends

Abstract class

JpGraph 1.0 Simplified Class Hierarchy
ScatterPlotScatterPlot

SpiderPlotSpiderPlot

SpiderGraphSpiderGraph

SpiderAxisSpiderAxis

SpiderGridSpiderGrid

FontPropFontProp

TTFTTF

RGBRGB

Last updated: 10 Mar 2001
By: Johan Persson

1.3 Public Class references
The following section describes all the classes used in the library. For each class the file where it is
defined is specified, and it’s class hierarchy.

6.3.1 Class Graph
Defined in file: jpgraph.php

Public properties
Class Axis
xaxis,yaxis,y2axis;
Class Grid
sgrid,ygrid,y2grid;
Class Image img;
Class Text title;
Public methods
Graph()
Add()
AddY2()
AddText()
Box()
SetColor()
SetMarginColor()
SetFrame()
SetShadow()
SetScale()
SetY2Scale()
SetTickDensity()
Stroke()
Private properties & methods
Class LinearScale xscale,
yscale, y2scale;
GetPlotsYMinMax()
StrokeFrame()

General description
The Graph class is the main container class which controls the creation of the entire graph. You must
always instantiate one instance to create a graph. Through this class one controls many overall settings
of the image di splayed.

Graph(int $width, int $height, String $cacheName=””)

Parameters:
Int width Width in pixel of the overall image generated
Int height Height in pixel of the overall image generated
String cacheName Name for picture in cache.

Description:
Creates a new graph. This is often the first call made to set-up a new graph..
If the cache name is specified then the method will first try to locate the named file in the “./cache/”
directory rather then generating the graph on the fly. If the file is not there the graph will be generated
and saved as the specified file. This file is the passed through to the browser.
If no cache name is specified then the graph will always be generated and the cache bypassed.

Before any other operation is performed on the graph a call to SetScale() should be made to finish the
initialisation of the graph.

Returns:
NA

See also:
Class ImgStreamCache

Example:
$graph = new Graph(300,200); // Create a 300x200 big image to work with

Add(&Class Plot)

Parameters:
Class Plot Plot to be added to the graph

Description:
Each plot that should be displayed within the graph has to be added to the graph. This method will add
the plot so it will use the “Left” Y-scale, (the normal Y scale).

Note that since the plot is added as a reference any changes you make to the original plot will also
happen to the plot you have added to the graph.

Returns:
NA

See also:
AddY2(), SetScale()

Example:
$lineplot = New LinePlot($datay);
$graph->Add($lineplot);
$lineplot->SetColor(“red”); // Will affect the graph

AddY2(&Class Plot)

Parameters:
Class Plot Plot to be added to the graph

Description:
Works the same way as Add() but the plot is added for use with the Y2 scale (the right Y scale) instead.

Returns:
NA

See also:
Add(), SetY2Scale()

Example:
$graph->new Graph(300,200);
$graph->SetScale(“linlin”);
$graph->SetY2Scale(“linlog”);
$lineplot = New LinePlot($datay);
$graph->AddY2($lineplot);

AddText(&Class Text)

Parameters:
Class Text Text object to be added to the graph

Description:
Adds an instance of the Text class to the graph, allowing arbitrary text to be placed anywhere in the
graph.

Returns:
NA

See also:
Class Text

Example:
$caption=new Text(“Figure 1. Temperature over time”,0.1,0.8);
$caption->SetFont(FONT1_BOLD);
$graph->AddText($caption);

SetBox(Boolean $box=true, Int $weight=1, Color $color="black")

Parameters:
Boolean $b Flag to set plotarea box on or off
Int weight Line weight for box
Color color Line color

Description:
This is used to specify whether the plot -area should have a rectangle around it and the specifics of that
rectangle.

Note: As of version 1.0 the weight parameter is not honoured and hence the box will always be one
pixel wide.

Returns:
NA

See also:
SetFrame()

Example:
$graph->new Graph(300,200);
$graph->SetScale(“linlin”);
$graph->Box();

SetColor(Color $c)

Parameters:
Color $c Set the background color for the plot are

Description:
Sets the background color for the plot-area.

Returns:
NA

See also:
SetMarginColor()

Example:
$graph->SetColor(“wheat”);

SetMarginColor(Color $c)

Parameters:
Color $c Set the background color for the margins

Description:
Specifies the color of the area between the plot area and the edge of the image.

Returns:
NA

See also:
SetColor(), SetMargins()

Example:

SetFrame(Boolean $frame=true, Color $color="black", Int $weight=1)

Parameters:
Boolean frame Flag if the fram around the image should be drawn or not
Color color Color of the frame
Int weight Line weight for the frame

Description:
Sets a frame (rectangle) of the chosen color around the edges of the image.

Returns:
NA

See also:
SetBox()

Example:
$graph->SetFrame();

SetShadow(Boolean $shadow=true,int shadowWidth=4,Color shadowColor=grey40)

Parameters:
Boolean shadow Flag if the shadow should be displayed or not
Int shadowWidth Shadow width
Color shadowColor Shadow color

Description:
Sets a frame with a shadow around the entire image

Returns:
NA

See also:
SetFrame()

Example:
$graph->SetShadow()

SetScale(String $axtype,int $ymin=1,int $ymax=1,int $xmin=1,int $xmax=1)

Parameters:
String $axtype Type of scale
Int $ymin Min Y scale value
Int $ymax Max Y scale value
Int $xmin Min X scale value
Int $xmax Max X scale value

Description:
Specifies what kind of scales should be used in the graph. The following combinations are allowed

?? Linear scale. Both X and Y axis
?? Logarithmic scale. Both X and Y axis
?? Text scale. Only on X axis

Any combination of these may be used. Linear and logarithmic scales are pretty straightforward. The
text scale might deserve some explanation. The easiest way to think of the text scale is as a linear scale
consisting of only natural numbers, i.e. 0,1,2,3,4,… . This scale is used when you just have a number of
Y-values you want to plot in a consecutive order and don’t care about the X -values

To specify which combination of X and Y scales you want to use the $axtype parameter is specified.
The following values are allowed

?? “linlin” Linear X, Linear Y

?? “linlog” Linear X, Log Y
?? “textlin” Text X, Linear Y
?? “textog” Text X, Log Y
?? “loglin” Log X, Linear Y
?? “loglog” Log x, Log Y

It is normally recommended to use the auto-scaling feature since for most practical purposes it is good
enough. However on rare occasions you might want to specify the limits yourself. This is then done by
the rest of the parameters to the method.

Note: If you want to use a logarithmic scale you must make sure that the “jpgraph_log.php” is
included.

Returns:
NA

See also:
SetY2Scale()

Example:
$graph->SetScale(“textlin”);

SetY2Scale(String $axtype, int $ym in, $ymax)

Parameters:
String $axtype Type of scale
Int $ymin Min Y scale value
Int $ymax Max Y scale value

Description:
The graph allows two different Y-scales to be used and you can choose which one you want to use for
a specific plot by the way you are adding the plot to the graph, either by Add() or by AddY2() method.

This method works in the exact same way for the Y2 axis as the SetScale() method previously
described.

Allowed values for the $axtype are
?? “lin” Linear scale
?? “log” Logarithmic scale

Note: If you want to use a logarithmic scale you must make sure that the “jpgraph_log.php” is
included.

Returns:
NA

See also:
SetScale()

Example:
$graph = new Graph(300,200);
$graph->SetScale(“textlin”);
$graph->SetY2Scale(“log”);

SetTickDensity(int $densy=TICKD_NORMAL, int $densx=TICKD_NORMAL)

Parameters:
Int $densy Density hint for Y axis autoscaling

Int $densy Density hint for X axis autoscaling

Description:
This method is used to hint how many ticks the auto-scaling should try to fit on each of the axis.
The following defines may be used to hint to the auto-scaling how many ticks should be allocated

?? TICKD_DENSE Small distance between ticks
?? TICKD_NORMAL Default value
?? TICKD_SPARSE Longer distance between ticks
?? TICKD_VERYSPARSE Very few ticks

Returns:
NA

See also:
NA

Example:
$graph->SetTickDensity(TICKD_DENSE); // Many Y-ticks

Stroke()

Parameters:
NA

Description:
Should be the final method called in the script that generates a graph. This will generate the image and
send it back to the browser

Returns:
NA

See also:
NA

Example:
$graph->Stroke()

6.3.2 Class Axis
Defined in file: jpgraph.php

Public properties
Class LinearScale scale;
Class Text title;
Public methods
Hide()
HideFirstTickLabel()
SetColor()
SetWeight()
SetTitle()
SetTickLabels()
SetTextTicks()
SetLabelPos()
SetFont()
Private properties & methods
Axis()
Stroke()

General description
The Axis class is used to represent both the X and Y axis in the graph. It is possible to control the
individual properties of the axis such as color, weight, font used for labels, title etc through the method
defined in this class.

Instances
$graph->xaxis
$graph->yaxis
$graph->y2axis

Axis(Class Image &$img, &$aScale, $color="black")

Parameters:
Class Image &$img Type of scale
Class LinearScale &$aScale Min Y scale value
Color $ymax Max Y scale value

Description:
Creates a new axis. A new axis can be either a X -axis or an Y-axis. To create a new axis one supplies
an Image and a scale. It is also possible to specify the color: Colors may also be specified through the
SetColor() method.

Returns:
NA

See also:
Class LinearScale, Class LogScale, Class Image
Example:

Hide(Boolean $h=true)

Parameters:
Boolean $h

Description:
Hides the axis if $=true

Returns:
NA

See also:

Example:
$graph->yaxis->Hide()

HideFirstTickLabel(Boolean $flag=false)

Parameters:
Boolean $flag

Description:
If you (for esthetical reason) does not want to display the first tick label you call this method.

Returns:
NA

See also:

Example:

SetWeight(int $weight)

Parameters:
Int weight

Description:
Specify line weight of the axis.

Returns:
NA

See also:
SetColor()

Example:
$graph->yaxis->SetWeight(2)

SetColor(Color $color)

Parameters:
Color Color

Description:
Specified color of sxis.

Returns:
NA

See also:
SetWeight()

Example:
$graph->yaxis->SetColor()

SetTitle(String $t, String $adj="high")

Parameters:
String $t
String $adj

Description:

Specify title for the axis. The title may also be accessed as the “title” property of the axis. The
title may be adjust to either in the middle, at the high end or at the low end of the axis.

This method is actually a shortcut for $axis->title->Set($t). To change the specifics of the title
(like color or font) you apply the suitable method on the title property.

Returns:
NA

See also:

Example:
$graph->xaxis->SetColor(“red”);
$graph->xaxis->SetFont(FONT1_BOLD);

SetTickLabels(String Array $l)

Parameters:
String Array $l

Description:
Normally ticks are given numeric values corresponding to it’s position on the scale. However it is also
possible to specify alternative labels, for example you might want to have the name of the months on
the x-axis.

When using this method you should supply a value for each major tick mark.

Returns:
NA

See also:

Example:
$months = array(“Jan”,“Feb”,“Mar”,“Apr”,“May”,“June”);
$graph->xaxis ->SetTickLabels($month);

SetTextTicks(int $step, int $start=0)

Parameters:
Int $step
Int $start

Description:
When you have specified a text scale for the X-axis by default every whole number is used as a major
tick, i.e if you have 10 data-points the x-axis will have the labels (0,1,2,3,4,5,6,7,8,9). If you have many
data-points you might not want to display all these labels. This method let’s you control which labels
will be displayed.

The first parameter $step specifies that every $step ticks should be displayed. For example
SetTextTicks(2) will cause every second label to be displayed so given the 10 data-points before the
scale will now display (0,2,4,6,8).

The other parameter $start specifies which offset should the scale should start on, For example
SetTextTicks(2,1), will generate the scale (1,3,5,7,9).

If you combine both SetTickLabels() and SetTextTicks() you can fully control which data-points have
your specified text label.

Returns:
NA

See also:
SetTickLabels()

Example:
$month = array(“Feb”,”Apr”,”Jun”,”Aug”,”Oct”,”Dec”);
$graph->xaxis->SetTextTicks(2,1);
$graph->xaxis->SetTickLables($month)

SetLabelPos(int $pos)

Parameters:
Int $pos

Description:
Specify which side of the axis you want the text labels on. Valid values for $pos are (1, -1)

Returns:
NA

See also:

Example:
$graph->y2axis->SetLabelPos(-1); // Set labels to the left of the Y2 axis.

SetFont(int $size, String $font="internal")

Parameters:
Int $size
String $font

Description:
Specify font for labels in the axis.

Returns:
NA

See also:

Example:

Stroke(Class LinearScale $otherAxisScale)

Parameters:
Class LinearScale $otherAxisScale

Description:
Draws the axis. Since the position of the axis is specified in relation to the other axis it is also necessary
to supply the other scale as a parameter to draw the axis. By default the axis is place at the lower end at
the other axis if not otherwise specified with a call to Pos().

Returns:
NA

See also:

Example:

6.3.3 Class Ticks
Defined in file: jpgraph.php

Public properties
Class LinearScale scale;
Class Text title;
Public methods
SetColor()
SetWeight()
SupressZeroLabel()
SupressMinorTickMarks()
SupressFirst()
SetPrecision()
SetDirection()
Private properties & methods
Class Image img;
Stroke()
Ticks()
GetMinTickAbsSize()
GetMajTickAbsSize()

General description
Abstract base class for the linear and logarithmic ticks. Internal class which does never have to be
instantiated. Responsible for the overall layout and format for tick lines. Note that the actual tick labels
are drawn by the Axis class based on tick position calculations computed by actual subclasses to this
class.

Instances
$axis->scale->ticks

Ticks(&$scale)

Parameters:
$scale Scale to fit ticks on

Description:
Construct ticks for the specified scale.

Returns:
NA

See also:
LinerTicks(), LogTicks()

Example:

GetMinTickAbsSize()

Parameters:
NA

Description:
Get distance in pixels between minor tick marks.

Returns:
NA

See also:

Example:

SupressZeroLabel(Boolean $z=true)

Parameters:
$z TRUE/FALSE

Description:
Specify whether a label with numeric value 0 should be displayed

Returns:
NA

See also:

Example:

SupressMinorTickMarks(Boolean $tm=true)

Parameters:
$tm TRUE/FALSE

Description:
Specify whether minor tick marks should be displayed or not.

Returns:
NA

See also:

Example:

SupressFirst(Boolean $ft=true)

Parameters:
$ft TRUE/FALSE

Description:
Determine if the first tick mark should be displayed or not. It is sometimes useful to suppress the first
tick mar if the labels from both scales gets very close to each other.

Returns:
NA

See also:

Example:

GetMajTickAbsSize()

Parameters:
NA

Description:
Get distance, in pixels, between Major tick marks.

Returns:
NA

See also:

Example:

Set(real $maj, real $min)

Parameters:
$maj Specify, in world coordinates, the distance between major tick marks
$min Specify, in world coordinates, the distance between minor tick marks

Description:
Specify where the major and minor tick marks should be.

Returns:
NA

See also:

Example:

SetPrecision(int $p)

Parameters:
$p Number of decimal points

Description:
Specify how many decimals should be displayed in the automatic labels

Returns:
NA

See also:

Example:

SetDirection(int $dir=1)

Parameters:
$dir -1 for left (or up), +1 for right (or down)

Description:
Specify if the tick marks should be to the left or right side for an Y-axis or on the up or down side for
an X-axis.

Returns:
NA

See also:
SetDirection for class Axis which specifies which side the labels should go on.

Example:

6.3.4 Class Text
Defined in file: jpgraph.php

Public properties

Public methods
Text()
Set()
Hide()
Center()
SetColor()
SetFont()
SetBox()
SetOrientation()
GetWidth()
GetFontHeight()
Private properties & methods
Stroke()

General description
Represents a text string which may be added to the graph area in an auxiliary position.

Text(String $txt="",real $x=0, real $y=0)

Parameters:
$txt Text string to display
$x X-position in percent of image width. 0 percent is the left edge
$y Y-position in percent of image width. 0 percent is the top edge

Description:
Creates a new text object which may be displayed anywhere within the image. The text object is then
added to a specific graph through the AddText() method in the Graph class.

Returns:
NA

See also:

Example:
$t1 = new Text(“Overview”,100,180);
$graph->AddText($t1);

Set(String $t)

Parameters:
$t Text string

Description:
Set the text for a previous created Text object.

Returns:
NA

See also:

Example:
$t1->Set(“New title”);

SetBox(Mix $fcolor=array(255,255,255), Color $bcolor=array(0,0,0), $shadow=false)

Parameters:

$fcolor Box fill color, or FALSE if no box should be displayed
$bcolor Box frame color
$shadow Specifies if the box should have a drop shadow

Description:
Specifies that the text should be in a frame. If fill color is specified as “nofill” then the text will be
framed but will not have a filled background.

Returns:
NA

See also:
Class Image :: StrokeBoxedText()

Example:

Pos(real $x=0, real $y=0,String $halign="left")

Parameters:
$x X-Coord in percent of image width
$y Y-Coord in percent of image width
$haling Horizontal alignment

Description:
Set position and specify alignment.

Returns:
NA

See also:
Class Image :: StrokeText()

Example:

Hide(Boolean $f=true)

Parameters:
$f TRUE/FALSE

Description:
Hide the text. The test will not be drawn.

Returns:
NA

See also:

Example:

SetFont(int $size, String $name="internal")

Parameters:
$size
$name

Description:
Specifies text font. See Image::SetFont() for a detailed description.

Returns:

NA

See also:

Example:
$t1->SetFont(FONT1_BOLD);

Center(int $left, int $right, Boolean Mixed $y=false)

Parameters:
$left Left x-coordinate
$right Left x-coordinate
$y If specified, the Y-coordinate

Description:
Center the text between the two X-coordinates using possible a previous specified Y-coordinate.

Returns:
NA

See also:
Pos()

Example:

SetColor(Color $color)

Parameters:
$color Color of text

Description:
Specify text color to be used.

Returns:
NA

See also:

Example:
$t1->SetColor(“navy”);

SetOrientation(String $d="horizontal")

Parameters:
$d Specify if the text should be drawn vertical or horizontal.

Description:
Set the orientation of the text, either vertical or horizontal.

Returns:
NA

See also:
Pos()

Example:

GetWidth(Class Image &$img)

Parameters:
$img The image we are drawing to

Description:
Returns the width, in pixels, of the text

Returns:
NA

See also:

Example:

GetFontHeight(Class Image &$img)

Parameters:
$img The image we are drawing to

Description:
Returns the height, in pixels, of the text

Returns:
NA

See also:

Example:

Stroke(Class Image &$img)

Parameters:
$img The image we are drawing to

Description:
Stroke the text to the specified image.

Returns:
NA

See also:

Example:

6.3.5 Class Grid
Defined in file: jpgraph.php

Public properties

Public methods
SetLineStyle()
Show()
SetWeight()
SetColor()
SetWeight()
Private properties & methods
Grid()
Stroke()

General description
This class handles the drawing of the grid lines based on the calculations done by the Tick class which
is responsible for determine the exact positions of each vertical or horizontal tick mark.

You normally manipulates the grid as an instance in the graph class, either as $graph->xgrid or as
$graph->ygrid

Grid(Class Axis &$axis)

Parameters:
$axis Axis to which the grid lines belong

Description:
Handles the gridlines for the specified axis. Gridlines can be drawn on either just major ticks or on both
major and minor ticks. The default is to draw grid liens on major ticks only.

Returns:
NA

See also:

Example:

SetWeight(int $weight)

Parameters:
$weight in pixels

Description:
Specify weight in pixels for the gridlines.

Returns:
NA

See also:

Example:

SetColor(Color $color)

Parameters:
$color

Description:

Specify color for gridlines. Default is a very light grey color.

Returns:
NA

See also:

Example:

SetLineStyle(String $type)

Parameters:
$type Type of gridlines, see below

Description:
Specify line style for gridlines. Allowed styles are

?? “solid”
?? “dotted”
?? “dashed”
?? “longdashed”

Deafult is “solid”.

Returns:
NA

See also:

Example:

Show(Boolean $major=true, Boolean $minor=false)

Parameters:
$major Show/Hide Major gridline
$minor Show/Hide Minor gridline

Description:
Determine what gridlines are visible. Default is to show only major gridlines.

Returns:
NA

See also:

Example:
$graph->ygrid(true,true); // Show both maj and minor gridmarks

Stroke()

Parameters:
NA

Description:
Draw the gridlines as previously specified. The gridlines will only be drawn within the plot area of the
image. This is an internal method and should never be called from user level code.

Returns:
NA

See also:

Example:

6.3.6 Class LinearTicks
Defined in file: jpgraph.php
Extends Ticks.

Ticks LinearTicks
Public properties Public properties
Class LinearScale scale;
Class Text title;

Public methods Public methods
SetColor()
SetWeight()
SetDirection()
Set()

 SupressZeroLabel()
SupressMinorTickMarks()
SupressFirst()
SetPrecision()
GetMajor()
GetMinor()
Set()

Private properties & methods Private properties & methods
IsSpecified()
Class Image img;
Ticks()
GetMinTickAbsSize()
GetMajTickAbsSize()

 LinearTicks()
Stroke()
SetXLabelOffset()
SetTextLabelStart()

General description
The concrete class which implements linear ticks for X and Y axis. This class should be used through
it’s instance as a property of the scale.

Instantiated
$grasph->xaxis ->scale->ticks

LinearTicks()

Parameters:
NA

Description:
Create a new instance. Note this is a private method which should not be called by users of this library
directly.

Returns:
NA

See also:
LogTicks()

Example:

GetMajor()

Parameters:
NA

Description:
Get major step size in world coordinates

Returns:
NA

See also:
GetMinor()

Example:

GetMinor()

Parameters:
NA

Description:
Get minor step size in world coordinates

Returns:
NA

See also:

Example:

Set(real $maj_step, real $min_step)

Parameters:
$maj_step Specify major step size in world coordinates
$min_step Specify minor step size in world coordinates

Description:
Set the step size to beused for minor and major ticks. Note you should normally let the autoscaling
handle this since that is for most practical purposes good enough.

Returns:
NA

See also:

Example:

Stroke(Class Image &$img, Class LinearScale &$scale, int $pos)

Parameters:
$img The image to be drawn to
$scale The scale associated with these ticks
$pos Determine which side of the axis the ticks should go on,allowed values are
 -1 Left/Up
 1 Right/Down

Description:
Stroke the tick marks to the image. This method is private to the library and should never be called
directly.

Returns:
NA

See also:

Example:

6.3.7 Class LinearScale
Defined in file: jpgraph.php

Public properties
Class Ticks ticks
Public methods
GetMinVal()
GetMaxVal()
Update()
Translate($a)
SetColor()
SetWeight()
SetGrace()
Private properties & methods
LinearScale()
Init()
IsSpecified()
SetMin()
AutoScale()
CalcTicks()
MatchMin3()
InitConstants()
Stroke()

General description
The general scale class which represent the scale on either a X or Y axis. If the scale is not explicitly
set if will be automatically determined based on the min and max values of all the plots using this
scale. Both X and Y axis may have a linear scale. A special version of the linear scale is the “text”
scale which is a scale only containing whole numbers. Used to represent counting scales. A text scale
may only be used for a X-axis.

LinearScale(real $min=0, real $max=0, String $type="y")

Parameters:
$min Minimum world value to be represented
$max Maximum world value to be represented
$type Determines if this is a X or Y axis

Description:
Create a new instance of a linear scale. This is a private method to the library and should as such never
be called directly.

Returns:
NA

See also:
LogScale()

Example:

Init(Class Image &$img)

Parameters:
$img The image where the scale should be used

Description:
Second phase initialisation. Used to add the scale as an observer to the Image class since we need to get
notified if the image changes it’s parameters, for example if the margin are changed we must
recalculate our scaling constants.

Note this can’t be done in the constructor due to a bug in PHP4 that will not allow you to use a
reference to “this” pointer in the constructor. Strictly speaking it will of course allow you to use it but it
won’t work!

Int ernal method that should never be called by users of this library directly.

Returns:
NA

See also:
Image::AddNotifyer()

Example:

IsSpecified()

Parameters:
NA

Description:
Determine if the scale has been manually specified or not. Used to determine if t he scale should be
auto-scaled or not.

Returns:
TRUE/FALSE

See also:

Example:

SetAutoMin(real $min)

Parameters:
$min Min value in world coordinates for auto-scaling

Description:
By default the auto-scaling will use the lowest value of the plots as the minimum value of the Y-scale.
If the chosen value falls “close to” 0. Then zero will be chosen. However, it is sometimes useful to hard
set the minimum value used by the auto-scaling and then just have the auto-scaling determine the
maximum (normally) Y-value.

This method allows you to do just that.

Returns:
NA

See also:

Example:

GetMinVal()

Parameters:
NA

Description:
Get the minimum world coordinate.

Returns:
NA

See also:

Example:

GetMaxVal()

Parameters:
NA

Description:
Get the maximum world coordinate.

Returns:
NA

See also:

Example:

Update(Class Image &$img, Real $min, Real $max)

Parameters:
$img Image where the scale is used
$min Minimum world coordinate
$max Maximum world coordinate

Description:
This method is really design as a the observer notification method. This will update internal constants
that is used to perform the scaling between world and screen. This will get automatically called if, for
example, the margins of the image are changed.

Note that this method should normally never be called directly by a user using this library.

Returns:
NA

See also:

Example:

Int Translate(Real $a)

Parameters:
$a World coordinate

Description:
Translates a given world coordinate to the corresponding screen pixel position within the image.

Returns:
Screen coordinate in pixels

See also:
NA

Example:

SetGrace($grace)

Parameters:

$a Grace factor

Description:
Adds $grace percent to the max and min values used for autoscaling ti make scale larger then the actual
min and max values found in the data. The grace to add is calculated as the percentage of total dynamic
range., i.e. (max-min) which is then added to the max value and subtracted from the mijn value to make
the scale larger. A value of 10 normally gives satisfactory result. High values will make the graph look
very compressed.

Returns:
NA

See also:
NA

Example:
$graph->yscale->SetGrace(10); // Set 10% grace value to Y-scale

AutoScale(Class Image &$img, Real $min, Real $max, int $maxsteps, Boolean
$majend=true)

Parameters:
$img Image which is drawn to
$min Minimum world coordinate
$max Maximum world coordinate
$maxsteps Maximum number of major steps allowed
$majend Should the scale end at a major tick?

Description:
Performs autoscaling of the scale given the min/max and the number of maximum major ticks allowed.
Note that the autoscaling algorithm will most likely adjust the minimum and maximum values to better
fit within the scale chosen.

The maxsteps should in general be a function of the image size since a larger image can accommodate
more ticks.

The autoscaling is quite smart in that it actually performs a small search among some standard scale
step (multiple of 2, 5, 1 etc) to see which one fits best with the number of maximum steps. The
autoscaling has a slight preference to steps of 5 (0.5, 0.05 etc) so if there is a close match the steps of
5’s will be chosen.

The end of the scale can finish either on a minor or major tick mark. If you want the scale to end on a
major ticks mark, and hence have a potential label, the parameter $majend should be true.

Returns:
NA

See also:
CalcTicks()

Example:

InitConstants(Class &$img)

Parameters:
Img Image to draw top

Description:
Internal method. Initiates constants. Shuld never be called directly.

Returns:

NA

See also:

Example:

CalcTicks(int $maxsteps, Real $min, Real $max, int $a, int $b, Boolean $majend=true)

Parameters:
$maxsteps maximum number of major steps allowed on the scale
$min Min world coordinate
$max Max world coordinate
$a Algorithm Parameter a
$b Algorithm Parameter b
$majend Should the scale end on a major tick?

Description:
The internal work routine which tries to fit a number of ticks given the parameters a and b. The
parameters will control what type of ticks we will be trying, steps of 2, 5 etc.

This is completely an internal routine and should never be called. Only documented for completeness.

Returns:
NA

See also:
AutoScale()

Example:

MatchMin3(int $a, int $b, int $c, Real $weight)

Parameters:
$a Value a
$b Value b
$c Value c
$weight Weight for value c

Description:
Performs a weighted 3 way minimum, i.e. find the minimum of the three values a,b,c. The weight is
used to give the $c value a certain preference.

This is completely an internal routine and should never be called. Only documented for comp leteness.

Returns:
The minimum value

See also:
CalcTicks()

Example:

6.3.8 Class LogTicks
Defined in file: jpgraph.php
Extends Ticks.

Ticks LogTicks
Public properties Public properties
Class LinearScale scale;
Class Text title;

Public methods Public methods
SetColor()
SetWeight()
SetDirection()
Set()

Private properties & methods Private properties & methods
IsSpecified()
Class Image img;
Ticks()
GetMinTickAbsSize()
GetMajTickAbsSize()

 IsSpecified()
LogTicks()
Stroke()

General description
Calculates the tick marks for a logarithmic scale. This differs from the LinearTicks in that ticks can’t
be set manually. They are always calculated to be on even logs.

LogTicks()

Parameters:
NA

Description:
Creates a new logarithmic tick

Returns:
NA

See also:
LinearScale

Example:

IsSpecified()

Parameters:
NA

Description:
Determines if the ticks has been manually specified or not.

Returns:
NA

See also:

Example:

Stroke(Class Image &$img,Class LogScale &$scale, int $pos)

Parameters:
$img Image class to use
$scale logarithmic sacel to which the ticks belong

$pos Which side of the axis the ticks go, -1, 1

Description:

Returns:
NA

See also:

Example:

6.3.9 Class LogScale
Defined in file: jpgraph.php
Extends LinearScale.

LinearScale LogScale
Public properties Public properties
Class Ticks ticks
Public methods Public methods
GetMinVal()
GetMaxVal()
Update()
Translate($a)
SetColor()
SetWeight()

 Translate($a)
GetMinVal()
GetMaxVal()

Private properties & methods Private properties & methods
LinearScale()
Init()
IsSpecified()
SetMin()
AutoScale()
CalcTicks()
MatchMin3()
InitConstants()
Stroke()

 LogScale()
AutoScale()

General description
Represents a logarithmic scale. Note that plots which has an Y-value of 0 and is added to an Y axis
with a logarithmic scale will be automatically adjusted to 1.

LogScale(int $min, int $max, String $type="y")

Parameters:
$min Minimum value in whole number logs
$max Maximum value in whole number logs
$type X or Y axis

Description:
Creates a new logarithmic scale between the given limits. Note that the limits should be given in logs!

Returns:
NA

See also:

Example:
$l = new LogScale(0,2); // create a new Y scale between 1 and 100

int Translate(Real $a)

Parameters:
$a World coordinate to be translated

Description:
Translate a world coordinate to screen coordinate.

Returns:
Sceren coordinate

See also:

Example:
$pix = $scale->Translate(110,7);

Real GetMinVal()

Parameters:
NA

Description:
Get lowest value on scale

Returns:
Lowest value

See also:
LogScale::GetMaxVal()

Example:

Real GetMaxVal()

Parameters:
NA

Description:
Get highest value on scale

Returns:
Highest value

See also:
LogScale::GetMinVal()

Example:

AutoScale(Class Image &$img, Real $min, Real $max, int $maxsteps)

Parameters:
$img Drawing image
$min Min value of plots
$max Max value in plots
$maxsteps Maximum number of major steps

Description:
Determines the best fit log scale to accommodate both $min and $max values.

Notes this is an internal routine and should never be called directly by a user of this library.

Returns:
NA

See also:

Example:

6.3.10 Class Legend
Defined in file: jpgraph.php

Public properties

Public methods
SetColor()
Hide()
SetShadow()
SetLayout()
SetFont()
Pos()
SetBackground()
Add()
Private properties & methods
Stroke()

General description
Defines the appearance of the legend box in the plot. The legend box contains all the legends specified
for each plot in the graph. The legend box can have both horizontal and vertical layout.

Instantiated
$graph->legend

Legend()

Parameters:
NA

Description:
Create the legend. Note internal class should never be instantiated by a user class.

Returns:
NA

See also:

Example:

SetShadow(Boolean $f=true, int $width=2)

Parameters:
$f Shadow on/off
$width Shadow width

Description:
Specify if the legend box should have a drop shadow or not. Default is on.

Returns:
NA

See also:

Example:

SetLayout(int $l=LEGEND_VERT)

Parameters:
$l Determine horizontal or vertical layout

Description:
Determine if the text legend should be layout as stacked on top of each other (default) or horizontally
beside each other. Legal values for $l are

?? LEGEND_VERT
?? LEGEND_HOR

Returns:
NA

See also:

Example:

SetFont(int $size, string $font="internal")

Parameters:
$size Font size
$font Font family

Description:
Specify font for legends. See section 5.2 for legal values of $size

Returns:
NA

See also:

Example:

Pos(Real $x, Real $y, String $halign="right", String $valign="top")

Parameters:
$x X-coordinate in percent of image width
$y X-coordinat e in percent of image height
$haling How to interpret the X-coord
$valign How to interpret the Y-coord

Description:
Specify the position of the legend box.

Returns:
NA

See also:

Example:

SetBackground(Color $color)

Parameters:
$color Color

Description:
Specify background color for the legend box.

Returns:
NA

See also:

Example:

Add(String $txt, Color $color)

Parameters:
$txt Legend text to be added
$color Color of marker

Description:
Add a text legend to the legend box.

Note this is a private method that never should be called by a user libray directly. If you want a plot to
have a legend use the SetLegend() method for that plot.

Returns:
NA

See also:

Example:

Stroke(Class Image &$img, Class LinearScale &$xscale, Class LinearScale &$yscale)

Parameters:
$img Image to be drawn to
$xscale X-scale used for graph
$yscale Y-scale used for graph

Description:
Stroke the legend to the graph.

Note internal routine and should never be directly called by a user of this library.

Returns:
NA

See also:

Example:

6.3.11 Class LinePlot
Defined in file: jpgraph_line.php
Extends Plot.

Plot LinePlot
Public properties Public properties

Public methods Public methods
SetColor()
SetLineWeight()
Min()
Max()
SetLegend()

 LinePlot()
SetFilled()
SetFillColor()
SetCenter()

Private properties & methods Private properties & methods
Plot()
Legend()
Stroke()
PreStrokeAdjust()
StrokeMargin()

 Legend()
Stroke()

General description
The concrete class which implements a standard line plot.

LinePlot(Array Real &$datay, Mix $datax=false)

Parameters:
$datay Y-values
$datax Possible X-values

Description:
Create a line plot.

Returns:
NA

See also:

Example:

SetFilled(Boolean $f=true)

Parameters:
$f TRUE/FALSE

Description:
Determine if the line plot should be filled. The fill color is specified through the SetFillColor() method.

Returns:
NA

See also:
SetFillColor()

Example:

SetColor(Color $color)

Parameters:
$color Color

Description:
Specify line color.

Returns:
NA

See also:
SetFillColor()

Example:

SetFillColor(Color $color, Boolean $f=true)

Parameters:
$color Fill color
$f Should the line plot be filled ort not

Description:

Returns:
NA

See also:

Example:

Legend(Class Graph &$graph)

Parameters:
$graph Class Graph

Description:
Framework method. Gets called by framework to set the legend. Note if the plot is filled then the fill
color will be used as the legend color, otherwise the line color will be used.

Internal method. Should never be called by a user of this library.

Returns:
NA

See also:

Example:

SetCenter($f=true)

Parameters:
$f Specify if x-scale ticks used with a “text” scale should be centered.

Description:
When using a text scale by default the first tick mark will coincide with the Y-axis and hence the first
data point will have it’s x-coordinate the same as the Y-axis. This is not always aesthetic pleasing. To
change this call SetCenter() this will make each tick-mark be placed in the center of it’s “tick-slot” and
will have the effect of adding a vertical margin on the left and right of the plot -area.

See section “Advanced use of JpGraph – Using grace value” for an example.

Returns:
NA

See also:
NA

Example:
$lineplot->SetCenter()

Stroke(Class Image &$img, Class LinearScale &$xscale, Class LinearScale &$yscale)

Parameters:
$img Image to draw to
$xscale X-Scale to use
$yscale Y-Scale to use

Description:
Stroke the line plot.

Internal method. Should never be called by a user of this library.

Returns:
NA

See also:

Example:

6.3.12 Class AccLinePlot
Defined in file: jpgraph_line.php
Extends Plot.

Plot AccLinePlot
Public properties Public properties

Public methods Public methods
SetColor()
SetLineWeight()
Min()
Max()
SetLegend()

 AccLinePlot()
Max()
Min()

Private properties & methods Private properties & methods
Plot()
Legend()
Stroke()
PreStrokeAdjust()
StrokeMargin()

 Legend()
Stroke()

General description
The concrete class that implements an accumulated line plot. An accumulated line plot will “staple”
each line plot on top of each other using each individual Y point as the distance to the previous line
plot, hence the accumulation.

AccLinePlot(Array Class LinePlot $plots)

Parameters:
$plot Array of line plots

Description:
Creates a new accumulated line plot from two or more existing line plots

Returns:
NA

See also:

Example:
$l1=new LinePlot($data1y);
$l2=new LinePlot($data2y);
$l3=new LinePlot($data3y);
$al=new AccLinePlot(array($l1, $l2, $l3));

6.3.13 Class PlotMark
Defined in file: jpgraph_line.php

Public properties

Public methods
PlotMark()
SetType()
SetColor()
SetWidth()

Private properties & methods
Stroke()

General description
This class encapsulates the functionality to draw and position Plot marks in a line or scatter graph. This
is an internal class and should normally never be used. You should only access this class through the
“mark” instance variable in the line and scatter plot.

Instantiated
$lineplot ->mark

PlotMark()

Parameters:
NA

Description:
Create a new mark class.

Returns:
NA

See also:

Example:

SetType(int $t)

Parameters:
$t Specify mark type

Description:
Allowed types are:

?? MARK_SQUARE, A filled square
?? MARK_UTRIANGLE, A upward pointing triangle
?? MARK_DTRIANGLE, A downward pointing triangle
?? MARK_DIAMOND, A diamond shape
?? MARK_CIRCLE, A non-filled circle.
?? MARK_FILLEDCIRCLE, A filled circle

Returns:
NA

See also:

Example:
$lineplot->mark->SetType(MARK_DIAMOND);

SetColor(Color $color)

Parameters:
$color Color

Description:
Specify line color of marks

Returns:
NA

See also:
SetFillColor()

Example:

SetFillColor(Color $color)

Parameters:
$color Color

Description:
Specify fill color for marks

Returns:
NA

See also:
SetColor()

Example:

SetWidth(int $width)

Parameters:
$width Width, in pixels, of mark

Description:
Specify the width, in pixels, of the markl

Returns:
NA

See also:
SetColor()

Example:

Stroke(Class Image &$img, int $x, int $y)

Parameters:
$img Image to draw to
$x X-coordinate in pixels
$y Y-coordinate in pixels

Description:
Draw the mark to the specified image using the given screen coordinates (not world coordinates).

Returns:

NA

See also:

Example:

6.3.14 Class BarPlot
Defined in file: jpgraph_bar.php
Extends Plot.

Plot BarPlot
Public properties Public properties

Public methods Public methods
SetColor()
SetLineWeight()
Min()
Max()
SetLegend()

 BarPlot()
SetYStart()
Min()
SetWidth()
SetFillColor()

Private properties & methods Private properties & methods
Plot()
Legend()
Stroke()
PreStrokeAdjust()
StrokeMargin()

 Legend()
Stroke()
PreStrokeAdjust()

General description
Concrete class which implements the standard vertical bar plot functionality.

BarPlot(Array Real &$datay)

Parameters:
$datay Datapoints

Description:
Create a new bar plot from the datapoint given in $datay

Returns:
NA

See also:

Example:

SetYStart(Real $y)

Parameters:
$y Start value in world coordinates

Description:
Sets the Y value to become the base of the bars. Normally this is set to 0. For logarithmic plots this is
automatically adjusted to the lowest point on the scale.

Returns:
NA

See also:

Example:

SetWidth(Real $width)

Parameters:
$width In percent of major ticks (0.0-1.0)

Description:

Specify the width of each bar as percentage of with of the major ticks. This means that if you specify a
width of 1.0 there will be no gaps between the bars

Returns:
NA

See also:

Example:

SetFillColor(Color $color)

Parameters:
$color Color

Description:
Set fill colors for bars.

Returns:
NA

See also:

Example:

Stroke(Class Image &$img, Class LinearScale &$xscale, Class LinearScale &$yscale)

Parameters:
$img Image to draw to
$xscale X-scale to be used
$yscale Y-scale to be used

Description:
Draw the bar plot to the specified image.

Returns:
NA

See also:

Example:

6.3.15 Class GroupBarPlot
Defined in file: jpgraph_bar.php
Extends BarPlot.

BarPlot GroupBarPlot
Public properties Public properties

Public methods Public methods
BarPlot()
SetYStart()
Min()
SetWidth()
SetFillColor()

 GroupBarPlot()
Min()
Max()

Private properties & methods Private properties & methods
Legend()
Stroke()
PreStrokeAdjust()

 Legend()
Stroke()

General description
Concrete class which is responsible for constricting a grouped bar plot out of two or more normal Bar
Plot. Each bar in a group shares the same X-tick and the group bar is centred around that X -tick. Each
bar within the group is given equal width.

GroupBarPlot(Array Class BarPlot $plots)

Parameters:
$plot Array of bar plots

Description:
Create a group bar plot from the given individual bar plots. Note that there should normally be the
same number of data points for each bar plot.

Returns:
NA

See also:

Example:

Stroke(Class Image &$img, Class LinearScale &$xscale, Class LinearScale &$yscale)

Parameters:
$img Image to draw to
$xscale X-scale to be used
$yscale Y-scale to be used

Description:
Draw the group bar plot to the specified image.

Returns:
NA

See also:

Example:

6.3.16 Class AccBarPlot
Defined in file: jpgraph_bar.php
Extends BarPlot.

BarPlot AccBarPlot
Public properties Public properties

Public methods Public methods
BarPlot()
SetYStart()
Min()
SetWidth()
SetFillColor()

 AccBarPlot()
Min()
Max()

Private properties & methods Private properties & methods
Legend()
Stroke()
PreStrokeAdjust()

 Legend()
Stroke()

General description
Implements accumulated bar plots, also known as stacked bar plots. Takes two or more normal bar
plots and stacks them on top of each other for same X-values. Note the individual bars Y-values are
treated as deltas, so for example if two bar plots are added and the first value of each bar is 2 and 3 the
resulting stacked bar will have a value of (2+3)=5.

AccBarPlot(Array $plots)

Parameters:
$plot Array of bar plots

Description:
Create an accumulated bar graph plot from two or more other bar plots
Returns:
NA

See also:

Example:

Stroke(Class Image &$img, Class LinearScale &$xscale, Class LinearScale & $yscale)

Parameters:
$img Image to draw to
$xscale X-scale to be used
$yscale Y-scale to be used

Description:
Draw the accumulated bar plot to the specified image.

Returns:
NA

See also:

Example:

6.3.17 Class ErrorPlot
Defined in file: jpgraph_error.php
Extends Plot.

Plot ErrorPlot
Public properties Public properties

Public methods Public methods
SetColor()
SetLineWeight()
Min()
Max()
SetLegend()

 ErrorPlot()
SetCenter()

Private properties & methods Private properties & methods
Plot()
Legend()
Stroke()
PreStrokeAdjust()
StrokeMargin()

 Legend()
Stroke()
PreStrokeAdjust()

General description
Concrete class which implements error plots. Error plots takes two y-values for each X-value, min and
max. It then marks each pair of min/max values with a vertical bar.

ErrorPlot(array &$datay, array $datax=false)

Parameters:
$datay Data points,contains 2-Y values for each X -point.
$datax If specified, used as X-coordinates

Description:
Create a new error plot.

Returns:
NA

See also:

Example:

SetCenter(Boolean $c=true)

Parameters:
$c Set center on/off

Description:
Specify if the data points should be place at the left end between each major tick or at the center of the
major ticks.

Returns:
NA

See also:

Example:

Stroke(Class Image &$img, Class LinearScale &$xscale, Class LinearScale &$yscale)

Parameters:
$img Image to draw to
$xscale X-scale to be used

$yscale Y-scale to be used

Description:
Draw the error plot.

Returns:
NA

See also:

Example:

6.3.18 Class Plot
Defined in file: jpgraph.php

Public properties

Public methods
SetColor()
SetLineWeight()
Min()
Max()
SetLegend()
Private properties & methods
Plot()
Legend()
Stroke()
PreStrokeAdjust()
StrokeMargin()

General description
The abstract base class for all plots. All plots inherits from this class. Defines the basic characteristics
of a plot.

Plot(Array real &$datay, Mix $datax=false)

Parameters:
$datay Y values o be plotted
$datax If specified used as X -coordinates.

Description:
Creates a new plot using the given data vectors. If no X-vector is given the data-points will be
numbered sequentially starting with 0.

Returns:
NA

See also:

Example:

Stroke(Class Image &$img, Class LinearScale &$xscale, Class LinearScale &$yscale)

Parameters:
$img Image to use
$xscale X-scale to use for the plot
$yscale Y-scale to use for the plot

Description:
Stroke the plot.

Note internal routine and should never be directly called by a user of this library.

Returns:
NA

See also:

Example:

Legend(Class Graph &$graph)

Parameters:
$graph An instance of GRaph

Description:
Framework method. Gets called to let each individual plot decide what text should be added to the
legend. The standard implementation just adds the legend property to the Legend() if the legend is non-
empty. This will have a slight different implementation for plot types that manages several plots or
several legends. In that case this routine should add each individual legend that should be shown to the
$graph->legend.

Note internal routine and should never be directly called by a user of this library.

Returns:
NA

See also:

Example:

PreStrokeAdjust(Class Image &$graph)

Parameters:
$graph Instance of Graph()

Description:
Framework method. Gets called prior to tha stroking of the graph. May be used to make any
adjustment to the scales (or ticks) that is needed. For example, in the BarPlot(), this is used to adjust the
X-scale so that the bars gets ceneterd in the graph and not normally put close to the left Y-axis.

Note internal routine and should never be directly called by a user of this library.

Returns:
NA

See also:

Example:

SetWeight(int $weight)

Parameters:
$weight Specify weight of graph

Description:
Set the weight for the graph. The actual meaning of this method is determined by the concrete Plot
class.

Returns:
NA

See also:

Example:

Min()

Parameters:
NA

Description:

Determine the minimum X and Y value of all points.

Returns:
NA

See also:
Max()

Example:

Max()

Parameters:
NA

Description:
Determine the maximum X and Y value of all points.

Returns:
NA

See also:
Min()

Example:

SetColor(Color $color)

Parameters:
$color Color

Description:
Specify color of the plot. This color will also be used in the legend box.

Returns:
NA

See also:

Example:

SetLegend(String $txt)

Parameters:
$txt Legend text

Description:
Specify legend text for the plot. Any specified text is then automatically added to the legend box.

Returns:
NA

See also:

Example:

SetLineWeight(int $weight=1)

Parameters:
$weight Line weight of the plot

Description:
Specify line weight of the graph. The actual meaning of this method is determined by the concrete Plot
class.

Returns:
NA

See also:

Example:

StrokeMargin(Class Image &$img)

Parameters:
$img Image to be used

Description:
Framework method. Gets called after the margin in the graph has been set to its color. Should be used
to draw anything in margin. The default implementation does nothing.

Returns:
NA

See also:

Example:

6.3.19 Class ErrorLinePlot
Defined in file: jpgraph_error.php
Extends ErrorPlot.

ErrorPlot ErrorPlot
Public properties Public properties

Public methods Public methods
ErrorPlot()
SetCenter()

 ErrorLinePlot()

Private properties & methods Private properties & methods
Legend()
Stroke()
PreStrokeAdjust()

 Legend()
Stroke()
PreStrokeAdjust()

General description
The error line plot is much the same as the error plot with the addition of a line between the average
value of each error plot pair. The properties of the line may be accessed through the ‘line’ property of
the ErrLinePlot, so for example to draw a red line you issue the statement

$errlineplot ->line->SetColor(“red”);

ErrorLinePlot(array &$datay, array $datax=false)

Parameters:
$datay Data points,contains 2-Y values for each X -point.
$datax If specified, used as X-coordinates

Description:
Create a new error line plot.

Returns:
NA

See also:

Example:

Stroke(Class Image &$img, Class LinearScale &$xscale, Class LinearScale &$yscale)

Parameters:
$img Image to draw to
$xscale X-scale to be used
$yscale Y-scale to be used

Description:
Draw the error line plot.

Returns:
NA

See also:

Example:

6.3.20 Class SpiderGraph
Defined in file: jpgraph_spider.php
Extends Graph

Graph SpiderGraph
Public properties Public properties
Class Axis
xaxis,yaxis,y2axis;
Class Grid
xgrid,ygrid,y2grid;
Class Image img;
Class Text title;

 Class SpiderAxis axis;
Class SpiderGrid grid;

Public methods Public methods
Graph()
Add()
AddY2()
AddText()
Box()
SetColor()
SetMarginColor()
SetFrame()
SetShadow()
SetScale()
SetY2Scale()
SetTickDensity()
Stroke()

 SpiderGraph()
SupressTickMarks()
SetPlotSize()
SetCenter()
SetColor()
SetTitles()
SetTickDensity()
Add()
Stroke()

Private properties & methods Private properties & methods
Class LinearScale yscale;
Class LinearScale xscale,
y2scale;
GetPlotsYMinMax()
StrokeFrame()

Gene ral description
Represent a spider graph. This differs from Graph in that it only contains one scale and one axis which
is rotated in a number of copies around the center (set by SetCenter()). The number of axis is equal to
the number of datapoints in the plot and hence the angle between each axis is 2*pi/ (nbr of datapoints).
The firsr axis is orientated vertically at 90 degrees. Internally the $yscale instance variable is used for
the scale of the axis.

SpiderGraph($width=300,$height=200,$cachedName="")

Parameters:
Width The width of the image used for the graph
Height The height of the image used for the graph
CachedName The name of the cached graphic file

Description:
Creates a new image readu for spider plots. If cachedname is given the normal JpGraph cache
mechanism will kick in and save the generated image by that name. The next time the image is
generated it will first try to locate a cached version of the same name if found it will read it directly
from the cache, if not it will be generated.

Returns:
NA

See also:
Graph() Create a regular linear graph.

Example:
$graph = new SpiderGraph(300,200);

SupressTickMarks($f=true)

Parameters:
$f TRUE/FALSE Specify wether ot not tick marks should be shown.

Description:
Determine if tick marks should be displayed on each axis in the spider graph. The default is to turn the
ticks off.

Returns:
NA

See also:
NA

Example:
$graph->SupressTickMarks();

SetPlotSize($size)

Parameters:
$size Set dimater of the spider plot in percentage.

Description:
Specifies t he diameter of the spider plot in terms of min($wifth,$height) of the graph.

Returns:
NA

See also:
SetCenter()

Example:
$graph->SetPlotSize(0.7); // 70% of the minimum of width/height

SetCenter($px,$py=0.5)

Parameters:
$px Position in pixels of the center X-coordinate
$py Position in pixels of the center Y-coordinate

Description:
Specified the center of the spider plot graph in pixels, The default is to place the graph in the center of
the image.

Returns:
NA

See also:
SetPlotSize()
Example:

SetColor($color)

Parameters:
$color Color for background in the graph

Description:
Specify the background color of the graph. The default is white.

Returns:

NA

See also:
NA

Example:
$graph->SetColor(“silver”);

SetTitles(array $title)

Parameters:
$title Array of titles for each axis.

Description:
Used to specify the title for each of the axis in the spider graph. The number of titles should match the
number of data points in the plot (=number of axis in the graph).

Returns:
NA

See also:
NA

Example:
$graph->SetTitles(array(“Jan”,”Feb”,”Mar”,”Apr”,”May”,June”);

SetTickDensity($densy=TICKD_NORMAL)

Parameters:
$densy Tick density

Description:
Specify the tick density (i.e. how close should the tick marks / labels be on the axis). In spider graph
only the vert ical axis at 90 degrees have titles. The default setting is (of course) TICKD_NORMAL

Allowed setting are

?? TICKD_DENSE
?? TICKS_NORMAL
?? TICKD_SPARSE
?? TICKD_VERYSPARSE

Returns:
NA

See also:
NA

Example:
$graph->SetTickDensity(TICKD_SPARSE);

Add(&$splot)

Param eters:
$plot A new spider plot

Description:
Add a previously created spier plot to the spider graph. Note that each spider plot is stroked in the order
it is added, i.e. the last plot added will go over previously added plots in terms of image depth.

Returns:
NA

See also:
Class SpiderPlot

Example:
$plot = SpiderPlot($data);
$graph->Add($plot);

GetPlotsYMinMax()

Parameters:
NA

Description:
Return the minimum and maximum value for all the plots in the graph.

Returns:
array($min,$max);

See also:
NA

Example:
NA

Stroke()

Parameters:
NA

Description:
Stroke the defined graph to an image. This call should be the last call in the script since this call will
output the graph to the browser (and a cach file if a file name was specified when the graph was
created).

Returns:
NA

See also:
SpiderGraph()

Example:
Trivial.

6.3.21 Class SpiderAxis
Defined in file: jpgraph_spider.php
Extends Axis

Axis SpiderAxis
Public properties Public properties
Class LinearScale scale;
Class Text title;

 Class FontProp title

Public methods Public methods
Hide()
HideFirstTickLabel()
SetColor()
SetWeight()
SetTitle()
SetTickLabels()
SetTextTicks()
SetLabelPos()
SetFont()

 SetTickLabels();

Private properties & methods Private properties & methods
Axis()
Stroke()

 SpiderAxis()
Stroke()

General description
Handles the axis in the spider graph. Note thaht even though this class inherits most of the methods
from the general Axis class some methods are not supported since it is not suitable for this kind of axis.
The striked through methods which doesn’t exist in class SpiderAxis are not supported.

SpiderAxis(&$img, &$scale, $color=array(0,0,0))

Parameters:
$img Image to be drawn to
$scale Scale to use
$color Color of axis and labels

Description:
Create a new spider axis. This is an internal (private) routine.

Returns:
NA

See also:
NA

Example:
NA

SetTickLabels($labels)

Parameters:
$labels Array of tick labels

Description:
Set the tick label array, i.e. the name of the tick labels. By default the normal value will be displayed to
the right of the Y-axis.

Returns:
NA

See also:

NA

Example:
NA

Stroke($pos,$angle,&$grid,$title,$draw_label)

Parameters:
$pos Y-position inpixell of the axis start position
$angle Whiah angle dhould the axis be drawn at
$grid Output: Cont ains pair of pixel points for each of the grid points along the axis
$title Title of the axis
$draw_lable TRUE if the labels should be draw for this axis

Description:
Stroke the defined axis from the center at angle $angle to the image

Returns:
NA

See also:
NA

Example:
NA

6.3.22 Class SpiderPlot
Defined in file: jpgraph_spider.php

SpiderPlot
Public properties

Public methods
SpiderPlot()
Min()
Max()
SetLegend($legend)
SetLineWeight()
SetColor()

Private properties & methods
GetCount()
Legend()
Stroke()

General description
Creates a new spider plot. Each spider plot can only be stroked to a SpiderGraph() throught the use of
SpiderGraph::Add() method.

SpiderPlot($data)

Parameters:
$data Array of datapoints

Description:
Create a new spider plot from an array of data points. From each data point an axis is created. Note that
for practical purposes the number of data points really should be less then 10-12 points. Otherwise the
idea behind spier plots sorts of lose its meaning.

Returns:
NA

See also:
NA

Example:
$plot = new SpiderPLot(array(12,36,42,55,19));

Min()

Parameters:
NA

Description:
Return the minimum value of all data points for this plot

Returns:
NA

See also:
Max()

Example:
$max = $plot->Min();

Max()

Parameters:
NA

Description:
Return the maximum value of all data points for this plot

Returns:
NA

See also:
Min()

Example:
$max = $plot->Max()

SetLegend($legend)

Parameters:
$legend Legend string

Description:
Specify legend for this plot. This is a text string that will be automatically added to the legend box.

Returns:
NA

See also:
NA

Example:
$plot->SetLegend(“Defect Goal”);

SetLineWeight($w)

Parameters:
$w Weight for plot lines in pixels.

Description:
Specify the weight (width) of the line in the spider plot.

Returns:
NA

See also:
NA

Example:
$plot->SetWeight(2); // Specify the weight to two pixels

SetColor($color,$fill_color=array(160,170,180))

Parameters:
$color Line Color
$fill_color Fill color

Description:
Specify the color of the spider plot.

Returns:

NA

See also:
NA

Example:
(Trivial.)

GetCount()

Parameters:
NA

Description:
Return number of datapoints in plot.

Returns:
Int NumberOfDataPoints

See also:
NA

Example:
(Trivial)

Legend(&$graph)

Parameters:
$graph An instance of the spider graph

Description:
This is a framework method that gest called in the SpiderGraph stroke() method. It is used to give each
plot a chance to add the appropriate legend string and color to the legend I the graph. This helps the
decoupling between the graph class and the plot class.

Returns:
NA

See also:
NA

Example:
NA

Stroke(&$img, $pos, &$scale, $startangle)

Parameters:
$img Image to stroke to
$pos Y-coordinate position for startpoint
$scale Scale to use
$startangle Startangle for first data point

Description:
Strokes the previously defined spider plot to the griven image. This is an internal method that will be
called from SpiderGraph::Stroke()

Returns:
NA

See also:

NA

Example:
NA

6.3.23 Class SpiderGrid
Defined in file: jpgraph_spider.php
Extends Grid

Grid SpiderGrid
Public properties Public properties

Public methods Public methods
SetLineStyle()
Show()
SetWeight()
SetColor()
SetWeight()

Private properties & methods Private properties & methods
Grid()
Stroke()

 SpiderGrid()

General description
Handles the drawing of grid lines in the spider graph. Inherits all standard properties from Grid()

SpiderGrid()

Parameters:
NA

Description:
Creates a new spider grid. This is internal grid that never should be called directly.

Returns:
NA

See also:
Grid()

Example:
NA

6.3.24 Class ScatterPLot
Defined in file: jpgraph_scatter.php
Extends Plot

Plot SpiderGrid
Public properties Public properties

Public methods Public methods

Private properties & methods Private properties & methods

General description

ScatterPlot($datay,$datax)

Parameters:
$datay
$datax

Description:
Creates a new scatter plot from the coordinate arrays given.

Returns:
NA

See also:

Example:

6.3.25 Class PieGraph
Defined in file: jpgraph_pie.php
Extends Graph

Graph SpiderGraph
Public properties Public properties
Class Axis
xaxis,yaxis,y2axis;
Class Grid
xgrid,ygrid,y2grid;
Class Image img;
Class Text title;
Class Legend legend;

Public methods Public methods
Graph()
Add()
AddY2()
AddText()
Box()
SetColor()
SetMarginColor()
SetFrame()
SetShadow()
SetScale()
SetY2Scale()
SetTickDensity()
Stroke()

 Add()
Stroke()

Private properties & methods Private properties & methods
Class LinearScale yscale;
Class LinearScale xscale,
y2scale;
GetPlotsYMinMax()
StrokeFrame()

General description
Represent a spider graph. This differs from Graph in that it only contains one scale and one axis which
is rotated in a number of copies around the center (set by SetCenter()). The number of axis is equal to
the number of datapoints in the plot and hence the angle between each axis is 2*pi/ (nbr of datapoints).
The firsr axis is orientated vertically at 90 degrees. Internally the $yscale instance variable is used for
the scale of the axis.

PieGraph($width=300,$height=200,$cachedName="")

Parameters:
Width The width of the image used for the graph
Height The height of the image used for the graph
CachedName The name of the cached graphic file

Description:
Creates a new image ready for pie plots plots. If cachedname is given the normal JpGraph cache
mechanism will kick in and save the generated image by that name. The next time the image is
generated it will first try to locate a cached version of the same name if found it will read it directly
from the cache, if not it will be generated.

Returns:
NA

See also:
Graph(), SpiderGraph()

Example:
$graph = new PieGraph(300,200);

Stroke()

Parameters:
NA

Description:
Sends the created image back to the browser. Should be the latest call in your script since script
executionends with this call.

Returns:
NA

See also:
NA

Example:
$graph->Stroke();

6.3.26 Class PiePlot
Defined in file: jpgraph_pie.php
Extends --

SpiderGrid
Public properties
Class Text title

Public methods
PiePlot()
SetCenter()
SetSliceColors()
SetStartAngle()
SetFont()
SetSize()
SetFontColor()
SetLegends()
HideLabels()
SetPrecision()

Private properties & methods
Legend()
Stroke()
StrokeLabels()

General description
Creates a new Pie plot from the supplied data. By default each slice will have a label corresponding to
the percentage of the sum it Each plot may have an arbitrary title which can be accessed through the
“title” property in the PiePlot class. The title will be automatically centred on top of the PiePlot clear of
any possible labels. To set the title use the Set() method , i.e. $plot ->title->Set(“MyTitle”)

PiePlot($datay)

Parameters:
$datay

Description:
Creates a new scatter plot from the coordinate arrays given.

Returns:
NA

See also:

Example:

SetCenter($x,$y=0.5)

Parameters:
$ Center y in percentage of height
$y Center x in percentage of width

Description:
Set the center for the pie plot. Default is to be in the center of the image.

Returns:
NA

See also:
SetSize()

Example:
$plot->SetCenter(0.3, 0.4);

SetSliceColors($color)

Parameters:
$color Array of colors to use

Description:
Set an array of colors to use for the different slices. If you have more slices than colors the colors will
be rotated from beginning.

Returns:
NA

See also:

Example:
$plot->SetColors(array(“blue”,”green”,”red”,”orange”));

SetStartAngle($angle)

Parameters:
$angle Angle in radian (0<$angle<2*PI)

Description:
The first slice normally start at 0 degree. This method lets you specify at which angle the first slice
should start. Note that the angle is specified in radians.

Returns:
NA

See also:

Example:
$plot->SetStartAngle(M_PI/4); // Start at 45 degree angle

SetFont($font_size, $font="internal")

Parameters:
$font_size Set Font size
$font Font type

Description:
Specify font for labels

Returns:
NA

See also:

Example:
$plot->SetFont(FONT1_BOLD);

SetSize($size)

Parameters:
$size Size in percentage of the minimum of the height or width

Description:

Set the radius of the pie plot in percentage of the minimum of the width and height of the image.

Returns:
NA

See also:

Example:
$plot->SetSize(0.3);

SetFontColor(Color $color)

Parameters:
$color Color

Description:
Specify color for labels on the pie plot

Returns:
NA

See also:

Example:

SetLegends(Array $legends)

Parameters:
$legends Array of legends for each pie slice

Description:

Returns:
NA

See also:

Example:

HideLabels(Boolean $f=true)

Parameters:
$f TRUE = Hide labels

Description:
Specify wheter or not labels should be displayed.

Returns:
NA

See also:
SetFontColor(), SetFont()

Example:

SetPrecision(int $prec, Boolean $psign=true)

Parameters:

$prec Number of digits precision for the labels of the pie plot
$psign TRUE if each label should have an ending ‘%’ sign

Description:
Specified to what precision the labels should be displayed..

Returns:
NA

See also:
NA

Example:
$p1->SetPrecision(2);

Stroke(&$img)

Parameters:
$img Image to stroke to.

Description:
Internal method should never be called directly. Stroke the pie plot to the specified image.

Returns:
NA

See also:

Example:

StrokeLabels($label,$img,$xc,$yc,$a,$r)

Parameters:
$label Text label to print
$img Image to print to
$xc X-coordinate for Center of pie chart
$yc Y-coordinate for Center of pie chart
$a Angle to plot label at
$r Radius of pie plot

Description:
Draws the labels for each slide. Normally the angle is choosen to be in the middle of the slice. Internal
method and should never be called directly.

Returns:
NA

See also:

Example:

1.4 Internal class reference
Note: All the following classes are internal to JpGraph and should never be instantiated from clients to
JpGraph. They are only documented for completeness and for those who whish to extend JpGraph.

6.3.27 Class ImgStreamCache
Defined in file: jpgraph.php

Public properties

Public methods
ImgStreamCache()
PutAndStream()
GetAndStream()
Private proper ties & methods

General description
This is an internal class which is used by the Graph to handle streaming and caching of the generated
image. This class should never be instantiated by a user of the library. It is only documented here for
completeness.

ImgStreamCache(Class Image &$img, String $cacheDir=CACHE_DIR)

Parameters:
$img Image to be streamed
$cacheDir Cache directory to look for potentially cashed version of the image

Description:
Internal class to Image which handles the streaming and pot ential caching of images to file.

Returns:
NA

See also:

Example:

PutAndStream(Class Image &$img, String $fileName)

Parameters:
$img The image to stream
$filename Filename of cashed version

Description:
If filename is given then the image will be stored in the cache under that name. The image wil then be
streamed back to the browser.

Note1 that this should be the last call since nothing else can be sent back to the browser after this call.

Note2 This is an internal method that never should be called directly by a user of this library.

Returns:
NA

See also:

Example:

GetAndStream(String $fileName)

Parameters:
$filename File name

Description:

Tries to find the file with specified name and then stream that file as an image back to the
browser.

Returns:
False if no file was found.

See also:

Example:

6.3.28 Class Image
Defined in file: jpgraph.php

Public properties

Public methods
AddObserver()
SetFont()
GetFontHeight()
GetTextWidth()
StrokeText()
StrokeBoxedText()
SetMargin()
SetColor()
SetTransparent()
SetLineWeight()
SetStartPoint()
Line()
LineTo()
Arc()
Polygon()
FilledPolygon()
Rectangle()
FilledRectangle()
ShadowRectangle()
Point()
DashedLine()
SetImgFormat()
Private properties & methods
Image()
NotifyObservers()
Headers()
Stream()
Destroy()

General description
Represent the lowest layer. Contains all the drawing primitives that directly generates an image.

Instantiated
$graph->img

Image(int $width, int $height, String $format="png")

Parameters:
$width Width in pixel of the generated image
$height Height in pixel of the generated image
$format Graphic format for the generated image

Description:
Creates a new image width the specified width and heigh. Depending on the value of $format three
different graphic formats are supported

?? png
?? jpg
?? gif

Note that the actual supported formats are dependent on the specific version of the GD library.To use
jpg format and additional library must normally also be installed. See documentation on graphic
formats in PHP manual.

Returns:
A handle to the newly created image

See also:

Example:

AddObserver(String $meth, Object &$obj)

Parameters:
$meth Name of method to be called
$obj The object where the method exists.

Description:
Adds an observer to the image class which gets called when basic values are changed, such as the
margins of the image. The registred observer will be called with the a reference of the current instance
of the Class Image

Returns:
NA

See also:
NotifyOnservers()

Example:
$img->AddObserver("InitConstants",&$this);

NotifyObservers()

Parameters:
NA

Description:
Calls all previously registered observers for this instance of Image. All the called observers will get
called with a reference to the instance of this class as the first parameter.

This is really an internal method that never should be called. It is only described here for completeness.

Returns:
NA

See also:
AddObserver()

Example:
$img->NotifyObservers()

SetFont(int $size, String $name="internal")

Parameters:
$size Fontname/size
$name Type of font

Description:
Specify the font to be used for a successive call to StrokeFont(). Version 1.0 of JpGraph only supports
internal fonts. The available internal fonts are specified with integers between 0-4 or with the symbolic
constants according to the table

 Font style
Size Regular Bold
Small FONT0
Normal FONT1 FONT1_BOLD
Large FONT2 FONT2_BOLD

Table 1. Available internal fonts.

Returns:
NA

See also:
StrokeFont(), GetFontHeight(),GetFontWidth(),SetColor()

Example:
$graph->img->SetColor(“darkred”);
$graph->img->SetFont(FONT1_BOLD);
$graph->img->StrokeFont(50,20,”Revenue”,”center”);

GetFontHeight()

Parameters:
NA

Description:
Return the font height in pixels of the current active font.

Returns:
NA

See also:
GetTextWidth(), SetFont()

Example:

GetTextWidth(String &$txt)

Parameters:
$txt text string

Description:
Returns the width in pixel of the entire text string supplied.

Returns:
Textwidth in pixels

See also:
SetFont()

Example:

StrokeText(int $x, int $y, String $txt, String $halign="left", String $dir="h")

Parameters:
$x Horizontal coordinate for text
$y Vertical coordinate for text
$txt Text to be stroked
$haling Horizontal alignment
$dir Direction (Horizontal or vertical)

Description:
Draws the specified text string at the specified position. Depending on the value of $haling the x-
coordinate is interpret as:

$haling $x
“Left” Interpret as the left edge of the textstring
“Center” Interpret as the center of the text string

“Right” Interpret as the right edge of the textstrin g

Returns:
NA

See also:
SetFont(), GetFontHeight(), GetTextWidth()

Example:
$graph->img->StrokeText(50,20,”My first title”,”center”);

StrokeBoxedText(int $x, int $y, String $txt, String $halign, String $dir, Color $fcolor,
Color $bcolor, Boolean $sha dow=false)

Parameters:
$x Horizontal coordinate for text
$y Vertical coordinate for text
$txt Text to be stroked
$haling Horizontal alignment
$dir Direction (Horizontal or vertical)
$fcolor Fill color, if false no fill color will be used
$shadow TRUE if the box should have a drop shadow

Description:
Similar to StrokeText() but this method draws, a possible filled, box around the text. The box may also
have a drop shadow.

Returns:
NA

See also:
SetFont(), GetFontHeight(), GetTextWidth(), StrokeText()

Example:

SetMargin(int $lm, int $rm, int $tm, int $bm)

Parameters:
$lm Left margin in pixels
$rm Right marging in pixels
$tm Top margin in pixels
$bm Bottom margin in pixels

Description:
Specifies the margin area between the plot -area and the end of the image. The margin should be big
enough to hold any titles, labels or other text you want to be visible there.

Returns:
NA

See also:

Example:
$graph->img->SetMargin(20,20,30,30);

SetColor(Color $color)

Parameters:
$color Color

Description:

Specify drawing color for the following draw primitives. All consecutive calls to Line(), Rectangle(),
Arc() etc. will be drawn using this color. A color may be specified either as the RGB-triple or as one of
the predefined color names. Se chapter XX for a list of pre-defined color names.

Note. You should never call this function directly from user code since all defined drawing object (e.g.
LinePlot()) have a SetColor() method which saves each objects own color which is then set (using this
method) before the object is stroked to the image.

Returns:
NA

See also:
SetTransparent()

Example:
$graph->img->SetColor(“red”);
// or SetColor(array(255,0,0)) or SetColor(array(#FF,0,0))
$grph->img->Line(0,0,10,10);

SetTransparent(Color $color)

Parameters:
$color Transparent color

Description:
Specify which color should be transparent. Note that if you use a shadow on the image the upper right
“non-shadow” and the lower left “non-shadow” will always default to color white. This means that if
your page has a background you shold normally specify white as transparent to avoid a small white
area at the corner of the shadow.

Returns:
NA

See also:
SetColor()

Example:
$graph->img->SetTRansparent(“white”);

SetLineWeight(int $weight))

Parameters:
$weight Line weight in pixels

Description:
Specify the line weight for Line(), LineTo() methods.

Note that the line weight will not be applied to Rectangle(), FilledRectangle(), Arc()

Returns:
NA

See also:

Example:
$img->SetLineWeight(2);
$img->Line(0,0,200,100);

SetStartPoint(int $x, int $y)

Parameters:

$x x-coordinate
$y y-coordinate

Description:
Specify a start x-y-point for the next LineTo() call.

Returns:
NA

See also:
LineTo()

Example:
$img->SetStartPoint(10,10);
$img->LineTo(100,100); //Draw a line between (10,10) and (100,100)

Arc(int $cx, int $cy, int $width, int $height, int $start, int $end)

Parameters:
$cx Center x-coordinate
$cy Center y-coordinate
$width Width of arc in pixels
$height Height of arc in pixels
$start Start angle (in degrees)
$end End angle (in degrees)

Description:
Draw an arc with the given coordinates and specifications.

Returns:
NA

See also:

Example:
$img->Arc(100,100,25,25,0,360); // Draw a circle width radius=25 pixels

Line(int $x1, int $y1, int $x2, int $y2)

Parameters:
$x1,$y1 Start point
$x2,$y2 End point

Description:
Draw a line between the specified coordinates.

Returns:
NA

See also:
SetLineWeight()

Example:
$img->Line(0,0,100,100);

Polygon(Array int $points)

Parameters:
$points Array of coordinates

Description:
Draws an polygon between all the data points specified in the array “$points”

Returns:
NA

See also:
SetColor(), FilledPolygon()

Example:
$pnts = array(0,0,10,15,12,15,12,30,40,30);
$img->Polygon($pnts);

FilledPolygon(Array int $points)

Parameters:
$points Array of coordinates

Description:
Draws a filled polygon between all the data points specified in the array “$points”

Returns:
NA

See also:
Polygon(), SetColor()

Example:
$pnts = array(0,0,10,15,12,15,12,30,40,30);
$img->FilledPolygon($pnts);

Rectangle(int $xl, int $yu, int $xr, int $yl)

Parameters:
$xl, $yu Upper left corner
$xr, $yl Lower right corner

Description:
Draw a rectangle

Returns:
NA

See also:
SetColor()

Example:
$img->Rectangle(20,10,50,60);

FilledRectangle(int $xl, int $yu, int $xr, int $yl)

Parameters:
$xl, $yu Upper left corner
$xr, $yl Lower right corner

Description:
Draw a filled rectangle

Returns:
NA

See also:
Rectangle()

Example:
$img->FilledRectangle(20,10,50,60);

ShadowRectangle(int $xl, int $yu, int $xr, int $yl, Boolean $fcolor=false, int
$shadow_width=3, Color $shadow_color="gray40")

Parameters:
$xl, $yu Upper left corner
$xr, $yl Lower right corner
$fcolor Fill color of rectangle
$shadow_width Width of shadow
$shadow_color Color of shadow

Description:
Draws a filled rectangle with a shadow. If fcolor=false then no fill color will be used.

Returns:
NA

See also:
Rectangle(), Filledrectangle()

Example:

LineTo(int $x, int $y)

Parameters:
$x,$y End coordinate for the line

Description:
Draw a line between the previous end point for previous LineTo() to the point specified as parameter.
The previous start point may also be specified with a call to SetStartPoint()

Returns:
NA

See also:
SetStartPoint()

Example:

Point(int $x, int $y)

Parameters:
$x,$y End coordinate for the line

Description:
Set a single pixel.

Returns:
NA

See also:
SetColor()

Example:

DashedLine(int $x1, int $y1, int $x2, int $y2, int $dash_length=1, int $dash_space=4)

Parameters:
$x1,$y1 Start point
$x2,$y2 End point
$dash_length Length, in pixel, of line segment
$dash_space Spec, inpixels, between line segments

Description:
Draws a dashed line with the specified parameters.

Note that this is a much more computationally expensive then drawing a straight line with either
LineTo() or Line()

Returns:
NA

See also:
Line(), LineTo(), SetColor()

Example:
$img->DashedLine(0,0,30,50); // Draws a “dotted” line

Headers ()

Parameters:
NA

Description:
Internal method. Should never ever be called by a client. Only documented for completeness.

Outputs the necessary headers to the browser in preparation to send the raw binary data that represents
the image.

Implementation note: If you look at the implementation of Headers() you find that it is possible to
output two versions of the header, one simple and one slightly more complicated. This is controlled by
the instance variable $this->expired .

If this instance variable is true the header output will try to tell the browser not to cache the image, note
that this is not foolproof since there is no standard way of guaranteeing the no-caching in browser.

The default value of $expired is TRUE.

Returns:
NA

See also:

Example:

Destroy()

Parameters:
NA

Description:
Returns resources allocated when the image was created.

Note. This is normally not used when generating on-line images but useful to free resources when
images are just generated to files.

Returns:
NA

See also:
NA

Example:

Stream(Stream $file="")

Parameters:
$file File name to save image in

Description:
Streams the generated file either to a specified file (if parameter given) or directly back to the browser
if no file name has been supplied.

Returns:
NA

See also:

Example:
$img->Stream(“exmaple1.png”); // Save the generated image in a file

SetImgFormat(String $format)

Parameters:
$format Specifies graphic format

Description:
Specify the graphic format to be used.
This is a low level internal method. Should not be called directly. The graphic format is normally
specified when creating an instance of the Image() class.

Allowed graphic formats are:

?? png
?? jpg
?? gif

Returns:
TRUE If the graphic format is supported by the installation of PHP
FALSE Otherwise

See also:
Graph()

Example:

6.3.29 Class TTF
Defined in file: jpgraph.php
Extends --

TTF
Public properties

Public methods

Private properties & methods

General description
Handles loading of TTF font files and translation to specific TTF file names. This is an internal class
and should never be used directly by clients to JpGraph library.

TTF()

Parameters:
NA

Description:
Initiates TTF fonts by setting the corresponfing file names.

Returns:
NA

See also:

Example:

MethodName()

Parameters:

Description:

Returns:
NA

See also:

Example:

6.3.30 Class Gradient
Defined in file: jpgraph_bar.php
Extends --

Gradient
Public properties

Public methods

Private properties & methods

General description
Handles all aspects of Color gradient fill. Internal class.

MethodName()

Parameters:

Description:

Returns:
NA

See also:

Example:

MethodName()

Parameters:

Description:

Returns:
NA

See also:

Example:

6.3.31 Class RGB

Defined in file: jpgraph.php

Public properties

Public methods
RGB()
Color()
Allocate()
Private properties & methods

General description
Defines symbolic color names and handles allocation of colors in the image. This is an internal class
used by Image.

The following colors are predefined any other color can be specified by giving it’s RGB triple as the
argument to any SetColor() method.

Table 2 . Predefined color names.

RGB(Class Image &$img)

Parameters:
$img Image where the colors should be allocated

Description:
Create a new instance of the color handling class.

Returns:
NA

See also:

Example:

Color(Mix $color)

Parameters:
$color Either a RGB triple or a color name as a string

Description:
Translates a color name to a RGB triple. If an RGB triple is passed through it is returned directly unless
it is given in hex, in that case it is first translated to decimal

Returns:
An RGB triple

See also:

Example:
$c = RGB::Color(“#FFFFFF”);
// $c == array(255,255,255)

Allocate(Array $color)

Parameters:
$color Color given as either RGB triple, color name or hex-string

Description:
Allocates a new color in the image to which the RGB class belongs. Note that the very first color you
allocate (index 0) will become the background color.

Returns:
Color index in image palette.

See also:

Example:

6.3.32 Class FontProp
Defined in file: jpgraph_spider.php
Extends --

FontProp
Public properties
SetFont()
SetColor()
Public methods

Private pr operties & methods

General description
Internal class in spider used to enable the syntax $spider_plot->title->SetFont() by creating a sort of
shadow class which is instantiated as poperty “title” in the spider plot.

SetFont($family,$style=FS_NORMAL,$size=12)

Parameters:
$family Font family
$style Font style
$size Font size

Description:
Specify font

Returns:
NA

See also:
NA

Example:
SetFont(FF_ARIAL,FS_NORMAL,12);

SetColor($color)

Parameters:
$color Named color or RGB array

Description:
Specify color

Returns:
NA

See also:
NA

Example:
SetColor(“gray2”);

6.3.33 Class RotImage
Defined in file: jpgraph.php
Extends Image

Image RotImage
Public properties Public properties

Public methods Public methods
AddObserver()
SetFont()
GetFontHeight()
GetTextWidth()
StrokeText()
StrokeBoxedText()
SetColor()
SetMargin()
SetTransparent()
SetLineWeight()
SetStartPoint()
Line()
LineTo()
Arc()
Polygon()
FilledPolygon()
Rectangle()
FilledRectangle()
ShadowRectangle()
Point()
DashedLine()
SetImgFormat()

 StrokeText()
StrokeBoxedText()
SetTransparent()
SetLineWeight()
SetStartPoint()
Line()
LineTo()
Arc()
Polygon()
FilledPolygon()
Rectangle()
FilledRectangle()
ShadowRectangle()
Point()
DashedLine()

Private properties & methods Private properties & methods
Image()
NotifyObservers()
Headers()
Stream()
Destroy()

General description
Exactly the same as Image but with the added twist that it rotateds the image ? degrees all the
methods is exactly as in class Image().

RotImage($aWidth,$aHeight,$a,$aFormat=DEFAULT_GFORMAT)

Parameters:
$aWidth Image width in pixels
$aHeight Image height in pixels
$a Rotation angle
$aFormat Image format (encoding GIF, PNG, JPG)

Description:
Creates a RotImage class which implements the normal drawing primitives in Images but handles a
rotation around (0,0) with a degree.

Returns:
NA

See also:
Image()

Example:
$img = RotImage(300,200,40,“png”);

Manifest constants
In order to control certain behaviours of the library there are a number of DEFINE’s at the top of the file
‘jpgraph.php’. Their purposes are briefly discussed below. The default values for all these constants should
be fine for most users of the library. However, “power-users” might want to tweak these, hence this
description.

Constant Default value Description
ERR_DEPRECATED False Should the use if deprecated functions and

values give a fatal runtime error?
BRAND_TIMING False Should the time taken to generate an image be

“branded” in the lower left corner of the image?
BRAND_TIME_FORMAT “Generated in: 01.3fs” The actual format string for the time branding.
READ_CACHE True Should JpGraph first look in the cache to see if

the image has already been generated?
CACHE_DIR “./jpgraph_cache” Location of cache directory. Note this directory

must be writable for PHP.
USE_BRESENHAM False Should a PHP implementation of the

Bresenhams’s circle algorithm be used instead
of the built in GD Arc() drawing routine?
(Makes circles look aesthetically better in some
few cases – the drawback being that do circles
in PHP are slower then native GD)

TTF_DIR “./ttf” Location for TTF fonts
DEFAULT_GFORMAT “auto” Which graphic format should be used (auto,

jpg, gif, png) If this value is set to “auto” then
the best available format will automatically be
chosen. The preferred order is “png,gif,jpg”.

Drawing arbitrary shapes (using dummy graphs)
Disclaimer: This is an unsupported part of JpGraph.

To make it easy to try out arbitrary graphic drawings with all the normal support of JpGraph (like caching,
anti-aliasing etc) you can crate a dummy graph. This will in affect give you a canvas where you can use all
the drawing primitives in the Image class.

As usual you need to include both jpgraph.php and also the “dummy ” extension “jpgraph_dummy.php”

An example to draw a simple line would be

#include <jpgraph.php>
#include <jpgraph_dummy.php>

$graph = new DummyGraph(300,200);

$graph->img->SetColor(“red”);
$graph->img->Line(10,10,100,100);

$graph->Stroke();

Utilities
JpGraph 1.2 comes with two completely unsupported utility script to help with color selection and to
automatically generate a test page of images. Please note that this is only tools I use myself which I thought
might be useful for someone else they are not supported in any shape or form!

Automatic generation of all test images (test-suit)

Running the script “testsuit_jpgraph.php” will generate an index list of all *.php files in the current
directory. This is useful if you run this script from the “Examples ” directory. It will then generate an index
list with a link to all the example images. This is the tool used to manage all regression tests internally in
the development of JpGraph.

This script may also be called with a parameter “style” as in “testsuit_jpgraph.php?style=1” or
“testsuit_jpgraph.php?style=2”. In the latter case (style=2) the links will be replaced by the actual images.
You may then visually inspect all the generated images.

Color selection and upcoming support for color themes
Running the script “gencolorchart.php” will generate (by default in the cache directory) a number of
images with color samples and also a theme page. Running the script should generate the following output:

JpGraph color chart
Generating color chart images ...
 1. ./jpgraph_cache/color_chart01.gif
 2. ./jpgraph_cache/color_chart02.gif
 3. ./jpgraph_cache/color_chart03.gif
 4. ./jpgraph_cache/color_chart04.gif
Generating color chart index page.

Generating themes...

1. ./jpgraph_cache/theme01.gif [24 colors in theme 'earth']
2. ./jpgraph_cache/theme02.gif [19 colors in theme 'pastel']
3. ./jpgraph_cache/theme03.gif [15 colors in theme 'water']
4. ./jpgraph_cache/theme04.gif [11 colors in theme 'sand']

Generating theme index page.

Work done in: 3.64 seconds.

See Colorchart
See Index of themes

Figure 1. Output after running gencolorchart.php

The “Colorchart” is simple a page with all the named colors available in JpGraph. You can see all the
colors by following the link “Colorchart” at the bottom of the page. The reason for braking up the colors in
separate images is just the fact that the maximum number of colors in one image is limited by the palette
size.

Note: This is a good example of the inefficiency of the GIF format as compared to PNG. Each of the
above generated GIF images are roughly 100K while the corresponding images generated as PNG is only
around 13K in size.

The “themes” index is just a collection of colors that make up a certain theme, i.e. “earth”, “pastel” etc.
Themes are upcoming feature for 1.3. This utility was just intended to help me to easily view what colors
are present in a certain theme. By using a certain theme (in 1.3 and above) your graph will automatically
draw colors from that theme, so for example all the default colors for the pie slices in a pie graph will be
taken from the theme. Please note that the selection of colors in a specific theme is based on my personal
judgement and may not agree with you. If you have additional themes you would like to use please send me
a note on jpgraph@aditus.nu

As an example the “earth” (a “professional” looking color theme) have the following tentatively
composition:

Figure 2. The colors in the "earth" theme (subject to change for 1.3).

Graph

LinePlot

BarPlot

ErrorPlot

GroupBarPlot

AccLinePlot

AccBarPlot

LinearTicks

LogTicks

Axis

LinearScale

LogScale

ImageImgStreamCache

Text

Legend

Ticks

Plot

Uses

Extends

Abstract class

JpGraph 1.0 Simplified Class Hierarchy
ScatterPlot

SpiderPlot

SpiderGraph

SpiderAxis

SpiderGrid

FontProp

TTF

RGB

Last updated: 10 Mar 2001
By: Johan Persson

Specifying fonts

JpGraph supports both a set of built in bit-mapped font as well as True Type Fonts. For scale values on axis
it is strongly recommended that you just use the built in bitmap fonts for the simple reason that they are, for
most people, easier to read (they are also quicker to render). Try to use TTF only for headlines and perhaps
the title for a graph and it’s axis. By default the TTF will be drawn with anti-aliasing turned on.

Fonts are generally specified with three parameters

1. Font family
2. Font style
3. Font size

In the call to method SetFont(). If no specified style is dsupplied then the style will default to normal style
(FS_STYLE) , size has default value of 12pt.

Built in bitmapped fonts
Built in fonts are chosen by using one of the font families

?? FF_FONT0 (small size, does not support bold style)
?? FF_FONT1 (normal size)
?? FF_FONT2 (large size)

Built in fonts only supports style FS_NORMAL and FS_BOLD (and in the case of FF_FONT0 only
FS_NORMAL) trying to specify an unsupported combination for built in fonts will not give an error but
will have no effect.

Note: To support backward compatibility with pre-1.2 bitmap fonts might also be specified with FONT0,
FONT1, FONT2 (note the missing prefix FF_). However these specifications are deprecated as of 1.2. And
usage of these will be a critical error in the next major release. It is strongly suggested that you use the new
naming conventions since that is designed to harmonise with the TTF support.

The size parameter has no meaning for built in fonts and will be ignored. The size is implicitly set by
choosing the corresponding font family .

Some examples of how to specify the built in fonts

SetFont(FF_FONT1,FS_BOLD);
SetFont(FF_FONT1,FS_BOLD,12); // Size 12 is ignored
SetFont(FONT1); // Deprecated!
SetFont(FF_FONT2); // Use built in FONT1 using default style.
SetFont(FF_FONT0,FS_BOLD); // FONT0 does not support bold style, will be ignored

True Type Fonts
Before you can start using True Type Fonts you need to make sure that

1. You have downloaded the TTF files. Due to it’s size they are in a separate package from the JpGraph

script code.
2. The TTF_DIR constant in jpgraph.php points to the directory where the font files may be found.
3. You installation of PHP supports TTF (most should do)

By default JpGraph will look for fonts in directory “./TTF/”

In JpGraph 1.2 the font families and styles supported are listed in Table 1.

Font family Font style

PHP Constant Real name FS_NORMAL FS_BOLD FS_BOLDITALIC FS_ITALIC
FF_COURIER Courier new ? ? ?
FF_VERDANA Verdana ? ? ?
FF_TIMES Times New Roman ? ? ?

FF_HADWRT Lucida Handwriting ?

FF_COMIC Comic Sans ? ?

FF_ARIAL Arial ? ? ?
FF_BOOK Book Antiqua ? ? ? ?

Table 1 Available combination of TTF font families and styles

The use of a an illegal combination will give a runtime error indicating the type of problem, e.g. “Style not
supported for font family”. On additional thing to keep in mind when designing graphs is that even though
TTF may look more appealing from an aesthetic point of view they are much more time consuming to
render and also involves one additional disk access.

Some examples:
SetFont(FF_COURIER); // Courier normal 12 points
SetFont(FF_COURIER,FS_BOLD); // Courier bold 12 points
SetFont(FF_COMIC,FS_BOLD,16); // Comic Sans Serif, bold, 16 points

Adding new TTF fonts
If you have a particular favourite font which doesn’t come as default it is quite easy to add that font to
JpGraph as an extension. There are basically 3 things you need to do:

1. Get the TTF file(s) and add it to your font directory. You need separate files for each of the styles you

want to support. These different files uses the following naming conventions:
Normal font file = <basefilename>
Bold font file = <basefilename>”bd”
Bold italic file = <basefilename>”bi”
Italic file = <basefilename>”i”

2. Define a new constant FF_xxxxx in jpgraph.php which names your font (at the top of the file)

3. Update Class TTF constructor in jpgraph.php with the mapping between your new constant and the
<basefilename>

That’s it!

Anti-aliased line support
From version 1.2 JpGraph supports drawing of anti-aliased lines. There are a few caveats in order to use
this which is discussed in this section.

Note that anti-alising will not be used for either horizontal, vertical or 45 degree lines since they are by
their nature are sampled at adequate rate.

Enabling anti-aliased lines
Anti-aliased lines are enabled by calling the method SetAntiAliasing() in the Image class, so for example
you would normally make the call

$graph->img->SetAntiAliasing()

to enable this feature. The anti-aliasing for lines works by “smoothing” out the edges on the line by using a
progressive scale of colors interpolated between the background color and the line color. Hence the line
drawing algorithm needs to know the background color. By default the line drawing algorithm looks at the
first point of the line to see what the underlying color is and then uses this as the background color. This
might not always give the best result since you might have several lines starting from the same point. Then
the first line will correctly read the background color but the second line (which starts from the same point)
will only see the previous lines color and not the real background color.

To solve this problem you can specify the background color as a parameter in the call to SetAntiAliasing()
method. This will then be used for all subsequent lines. For example a call would say

$graph->img->SetAntiAliasing(“white”);

to use “white” as the background color regardless what the color at start position of the line is. An example
of where you must use this is for “spider-plots” since the axis for the spider plot all overlap in the center.

Anti-aliased gotchas
There are also a couple of potential limitations (or gotchas) you probably would like to keep in mind when
using anti-aliased lines

1. Anti-aliases lines are much slower then the normal lines, roughly 5 times slower. Remember that the

whole line-drawing algorithm is implemented in PHP since the underlying graph library (GD) doesn’t
support anti-aliased lines.

2. Anti-aliased lines uses up more of the available color-palette. The exact number of colors used is
dependent on the line-angle (number of lines with different angles uses more colors). Hence it might
not be possible to use anti-aliasing with color-gradient fill since the number of available colors in the
palette might not be enough. The color gradient is limited to use 100 color bands between the two
colors. A normal palette can keep around 256 colors (I’m not 100% sure of the exact format used in the
JPG, PNG, or GIF standards)

3. All anti-aliased line should have the same background color if the color is specified in the call to
SetAntiAliasing(). Otherwise only the part of the line that covers the specified background color will
be anti-aliased. The same goes for lines where the color is automatically determined but here each line
may have its own background.

4. Anti-aliased lines will ignore the line width specified. They will always have a width of roughly 1.

1 Using Spider Plots

1.1 Introduction
Spider plots are most often used to display how a number of results compare to some
set targets. They make good use of the human ability to spot symmetry (or rather un-
symmetry) . the figure below show an example of a spider (sometimes called a web-
plot). Spiderplots are not suitable if you want very accurate readings from the graph
since, by it’s nature, it can be difficult to read out very detailed values.

Figure 1. Example of a spider graph with two plots.

The following points are worth noting:

?? There is one axis for each data point
?? Each axis may have an arbitrary title which is automatically positioned
?? A spider plot may be filled or open
?? You can control color, weight of lines as you are already used to
?? A spider plot can, as usual, have a title and a legend
?? The first axis is always oriented vertical and is the only axis with labels
?? Grids may be used (dashed in the figure above)
?? You may have ticks (although suppressed in the figure above
?? You can control the size and position within the frame of the graph
?? You may have several plots within the same graph

In the following section we show how to draw both simple and complex spider graph.
As we will show all the settings will follow the same pattern as for the more standard
linear graphs.

1.2 Creating a simple spider graph.
Let’s start by creating a very simple spider plot based on 5 data points using mostly
default values.

As the first thing you must remember to include the extension module that contains
spider plot. “jpgraph_spider.php”.

<?php
 include ("jpgraph.php");
 include ("jpgraph_spider.php");

 // Some data to plot
 $data = array(55,80,46,71,95);

 // Create the graph and the plot
 $graph = new SpiderGraph(250,200);
 $plot = new SpiderPlot($data);

 // Add the plot and display the graph
 $graph->Add($plot);
 $graph->Stroke();
?>

If you run the above script it will generate the following image

Figure 2. A very simple spider plot

From the above image you may note the following have been set automatically

?? Each axis have been given a default title (it’s number)
?? Major tick marks are displayed on each axis
?? The scale has been determined by autoscaling
?? The plot is filled by default
?? The size of the graph has been determined to fit within the given image size

1.3 Controlling size and position of plot
One of the simplest changes we can do is change the size and the position of the
graph. These two parameters are controlled by the two methods SetCenter() and
SetPlotSize(). The parameters of both these methods are in percentage.

To demonstrate lets make the plot smaller and move it a little bit to the left in the
image. This is accomplished by the lines

. . .
// Set diameter of spider graph to 40% of min(height,weight)
$graph->SetPlotSize(0.4);

// Position the centre of the graph at x=30% of the width and y=50% of
height
$graph->SetCenter(0.3,0.5);
. . .

The resulting image will then be as displayed below

Figure 3. Resized and repositioned spider gra ph.

It is worth clarifying how the sizing works. Since the size is given in percentage you
might, rightfully so, ask percentage of what? Image height?, image width? Since the
axis can be in all directions we take the percentage of min(height,width).

1.4 Specifying titles for the axis and legends for plots
We normally would like something more meaningful as description of each axis then
it’s number. Specifying the titles are accomplished through the use of the method
SetTitles() of the graph. Let’s say that each axis corresponds to a month.

. . .
$axtitles=array(“Jan”,”Feb”,”Mar”,”Apr”,”May”);
$graph->SetTitles($axtitles);

Let’s also specify a legend for the plot

. . .
$plot->SetLegend("Defects");

Let’s also take the opportunity to set a title of the graph

. . .
$graph->title->Set(“Result 2001”);
$graph->title->SetFont(FONT1_BOLD);

The resulting graph are now starting to look a little bit more pleasing as the following
figure illustrates

Figure 4. Spider graph with legends, and titles .

1.5 Specifying gridlines
By default the graph has tick lines but no grid lines. Let’s change this so that we don’t
have any ticks but use “dashed” gridlines instead.

To suppress ticks we could do it the same way as for linear graphs by calling the
SupressTickMarks() method of Ticks. This would be accomplished by

. . .
$graph->axis->scale->ticks->SupressTickMarks();

Since this is, in OO terms, a clean design is it still a little bit unwieldy . There is
therefore a shortcut which lets you just say

. . .
$graph->SupressTickMarks()

To set a “dashed” apperance of the grid you have to invoke the SetLineStyle() method
of the grid and to show the grid lines you just call, as before, the method Show() of
the grid as

. . .
$graph->grid->SetLineStyle("dashed");
$graph->grid->Show();

The default color for grid is “silver” but you may of course easily change that by
invoking the SetColor() method on the grid.

Figure 5. A Spiderplot with gridlines and no ticks.

By design the plot is above the gridline but beneath the axis in image depth, hence
some part of the gridlines are hidden.

To have the gridlines more “visible” just change their color, say to, dark red by
invoking the SetColor() method as

. . .
$graph->grid->SetColor(“darkred”);

The resulting image will be

Figure 6. Spider graph with dark red grid lines

1.6 Setting background color and frame
By default the image has a frame with “white” as the background color. As you saw
for normal Linear plot we can have a background and a shadow of the frame. The one
difference between spider plots and linear plots is that there is no concept of margin
and plot area color, there is only one background color. This is set through the Color()
method of graphs.

To set a shadowed frame you just evoke the SetShadow() method of the graph. It has
the same parameter as the previous introduced Linear graphs.

Lets set thye background to a very light blue-ish color and add a shadow to the frame.
This is done by the two lines

$graph->SetShadow();
$graph->SetColor(array(200,230,230));

and the resulting graph

Figure 7. Spider graph with background and shadow

1.7 Adding several plots to a spider graph
This is done exactly the same way as for the other graph types, just call the method
Add() of class SpiderGraph for each plot you want to add. For spider plots it is
important that all the plots have the same number of data points. The library will
check this and treat this as an error and abort the program.

Lets add a second plot to our previous graph and let’s make that an open plot, i.e. it is
not filled, and make the weight of the line 2.

$data2 = array(65,95,50,75,60);
$plot2 = new SpiderPlot($data2);
$plot2->SetFill(false);
$plot2->SetLineWeight(2);
$plot2->SetLegend(“Target”);
. . .
$graph->Add($plot2);

The resulting graph will now look like

Figure 8. Spider graph with two plots.

1 Using the cache mechanism and other performance
related questions

1.1 Performance considerations
Since PHP is not a compiled language and the plot generated by this library require
non-trivial work by PHP this must be seriously considered in the overall design for a
web site. Generating complex graphs with many data-points is bound to take time. As
a rough guideline most of the graphs demonstrated above take in the order of 1-2s to
be generated and send back to a browser on a local network using a rather old PC with
a slow disk as my local server (PII 166MHz). Experience shows that time spend is
roughly 30% parsing the actual PHP code and 70% of the overall time depends on the
complexity of the graphs. Hence no matter how simple graphs are you will have to
face at least a standard hit to generate each graph.

This might be unacceptable in a high volume site. There is not much we can do about
the complexity of the library if we want all this functionality and there is little we can
do about the speed by which PHP parses the library.

However, we can do something. If you have non-real-time graphs that might only get
new data, say every, 24h. Then it would be possible to generate the image and then
save it in a file cache so that the next time a user requests this graph it is read from
disk instead of generated by PHP. Every night we might then clear the cache and the
first user whom requests the graph the next day will take the hit of actually generating
it but the rest of the user will just be fetching the generate d cached version.

1.2 Using the cache mechanism
The cache mechanism kicks in if you call the graph constructor with an additional file
name as an additional parameter. One of two things will now happen

1. The file cache is searched for a file with this name. If the file exists it is read and

passed through to the browser with very little overhead.
2. The file does not exist in the cache. In that case the graph is generated in the

normal way but before it is passed back to the browser it is saved as a file in the
cache

To use the cache your call could for example be

$graph = new Graph(300,200,”myfilename.png”)

Note that In the above example I used the extension “*.PNG” for the file. To use any
specific extension is not necessary or any extension at all in fact.

For the cache to work you must have a directory called “jpgraph_cache” in the same
place as you run your script from since the library will search for a directory called
“./jpgraph_cache”. This directory must be readable and writeable for PHP. This
scheme is not completely free from hassle from a security point of view. The other
way would be to have a “global” cache directory but this increases the risk for a name

clash and it might also not be possible if you are using some ISP that only allows you
to create files within your own area.

The name of the directory used for caching might also be easily changed since it is
defined in jpgraph.php as a

DEFINE(“CACHE_DIR”, “./jpgraph_cache”)

near the top of the file. You could for example change it to some ge neral temp area
(perhaps /var/tmp or similar) .

I’m not completely satisfied with the way this currently works since the cache
directory in practice must be writeable for everyone and his uncle unless you can
persuade the administrator to add you and PHP to the same group and then just make
the directory writeable for member so that group. Any suggestions on how to better
cope with this potential security whole are welcome!

1 Advanced features of JpGraph

1.1 Using grace percentage on scales
By default the autoscaling algorithm tries to make best possible use of screen estate by making the
scale as large as possible, i.e. the extreme values (min/max) will be on the top and bottom of the scale
if they happen to fall on a scale-tick. So for example doing a simple line plot could look like the plot
shown in Figure 1 below.

Figure 1. Example of graph with grace=0 (default values).

However you might sometime want to add some extra to the minimum and maximum values so that
there is some “air” in the graph between the end of the scale values and the extreme points in the
graphs. This can be done by adding a “grace” percentage to the scale. So for example adding 10% to
the y-scale in the image above is done by calling the SetGrace() method on the yscale as

$graph->yscale->SetGrace(10); // Set 10% grace.

After this the graph will look like shown in figure below

Figure 2. Example of using grace for the Y-scale.

As you can see the dynamic range has been reduced by roughly 10% . The exact value will depend on
the endpoints chosen by the autoscaling algorithm. The grace simply works by adding the percentage
grace value of the dynamic range (maximum-minimum) and using those values as the min and max
values sent into the autoscaling algorithm.

Note: As you can see the above graph also makes use of SetCenter() for the lineplot so thet the
numbering on the x-axis is placed in the center of each tick-“slot”.

As an example the complete code for the last graph in Figure 2 above is:

<?php
include ("jpgraph.php");
include ("jpgraph_line.php");

$datay = array(0.2980,0.3039,0.3020,0.3027,0.3015);
$graph = new Graph(300,200);
$graph->img->SetMargin(40,40,40,40);
$graph->img->SetAntiAliasing();
$graph->SetScale("textlin");
$graph->SetShadow();
$graph->title->Set("Example of 10% grace in line plot");
$graph->title->SetFont(FF_FONT1,FS_BOLD);
$graph->yscale->SetGrace(10);

$p1 = new LinePlot($datay);
$p1->mark->SetType(MARK_FILLEDCIRCLE);
$p1->mark->SetFillColor("red");
$p1->mark->SetWidth(4);
$p1->SetColor("blue");
$p1->SetCenter();
$graph->Add($p1);

$graph->Stroke();

?>

Figure 3. The code that generated Figure 2 above.

1.2 Timing the generation of graphs
When evaluating the performance (or suitability for on -line graph genertation) for graphs there must be
a simple way to get a knowledge on the time it takes to generate a specific image. In JpGraph this
works by the possibility to brand each generated picture by the time in s (and ms) it took PHP to
generate that image.

This is controlled by the definition (in jpgraph.php)

. . .
DEFINE("BRAND_TIMING",TRUE);
. . .

By specifying this constant true or false you can det ermine wheter or not you would like to have the
image branded by the time. The actual string that gets formatted is specified by the definition

. . .
DEFINE("BRAND_TIME_FORMAT","Generated in: %01.3fs");
. . .

This let’s you easy customize the actual string that gets printed on the image. This string will always be
printed in the lower left corner of the graph. The image below show an example of a graph with the
time branded into it.

Figure 4Graph with timing information. (on my very slow old server…)

1.3 Using color gradient fill
From version 1.2 it is possible to use color gradient fill for certain graphs. As of this writing only bar
graphs supports color gradient fill at the moment. In future releases of JpGraph there will be added
functionality to use gradient fill for backgrounds and possible area-graphs (filled line-plots).
Color gradient fill fills the image with a smooth transition between to colors. In what direction the
transition goes (from left to right, down and up, fomr the middle and out etc) is determined by the style
of the gradient fill. JpGraph currently supports 7 different styles.

Before explaining how this feature is used you must be aware of two caveats with gradient filling:

1. gradient filling is computational expensive. Large plots with gradient fill will take in the order
of 6 times longer to fill then for a normal one-color fill. This might to some extent be helped
by making use of the cache feature of JpGraph so that the graph is only generated once or a
few times.

2. gradient filling will make use of much more colors (by definition) this will make the color
palette for the image bigger and hence make the overall image larger. It might also have some
severe effect on using anti-aliased line in the same image as color gradient filling since anti-
aliased lines also have the possibility to make use of many colors. Hence the color palette
might not be big enough for all the colors you need.

This problem is often seen as that for no apperant reason some color you have specified in the
image does appear as another color. (This is not a bug in JpGraph!) This is something to
especially watch out for when enabling anti-alising since that also uses a lot of colors. Since
the numbers of colors used with anti-alising depends on the angle on the lines it is impossible
to foresee the number of colors used for this.

Different styles of gradient filling
The seven different styles are specified by using the specific PHP constants defined in jpgraph.php.
Currently the following styles are available:

Style Description Example
GRAD_VER The gradient moves from left to right

Style Description Example
GRAD_HOR The gradient moves from top to bottom

GRAD_MIDVER The gradient goes from the middle and

vertically up/down

GRAD_MIDHOR The gradient goes from the middle and

horizontally left/right

GRAD_CENTER The gradient radiates from the center and

outwards.

GRAD_WIDE_MIDVER Similar to GRAD_MIDVER but with the

middle color taking up a wider area

GRAD_WIDE_MIDHOR Similar to GRAD_MIDHOR but with the

middle color taking up a wider area

Table 1. Different styles of color gradient filling

Using color gradient bar graphs
You only need to create the barplot as usual and then call method SetFillGradient() where you
need to specify two colors and a gradient style. So for example to specify the
GRAD_WIDE_MIDHOR style as in the last example in Table 1

$barplot->SetFillGradient("navy","lightsteelblue",GRAD_WIDE_MIDHOR);

1.4 Specifying fonts
JpGraph supports both a set of built in bit -mapped font as well as True Type Fonts. For scale values on
axis it is strongly recommended that you just use the built in bitmap fonts for the simple reason that
they are, for most people, easier to read (they are also quicker to render). Try to use TTF only for
headlines and perhaps the title for a graph and it’s axis. By default the TTF will be drawn with anti-
aliasing turned on.

Fonts are generally specified with three parameters

1. Font family
2. Font style
3. Font size

In the call to method SetFont(). If no specified style is dsupplied then the style will default to normal
style (FS_STYLE) , size has default value of 12pt.

Built in bitmapped fonts
Built in fonts are chosen by using one of the font families

?? FF_FONT0 (small size, does not support bold style)
?? FF_FONT1 (normal size)
?? FF_FONT2 (large size)

Built in fonts only supports style FS_NORMAL and FS_BOLD (and in the case of FF_FONT0 only
FS_NORMAL) trying to specify an unsupported combination for built in fonts will not give an error
but will have no effect.

Note: To support backward compatibility with pre-1.2 bitmap fonts might also be specified with
FONT0, FONT1, FONT2 (note the missing prefix FF_). However these specifications are deprecated
as of 1.2. And usage of these will be a critical error in the next major release. It is strongly suggested
that you use the new naming conventions since that is designed to harmonise with the TTF support.

The size parameter has no meaning for built in fonts and will be ignored. The size is implicitly set by
choosing the corresponding font family .

Some examples of how to specify the built in fonts

SetFont(FF_FONT1,FS_BOLD);
SetFont(FF_FONT1,FS_BOLD,12); // Size 12 is ignored
SetFont(FONT1); // Deprecated!
SetFont(FF_FONT2); // Use built in FONT1 using default style.
SetFont(FF_FONT0,FS_BOLD); // FONT0 does not support bold style, will be
ignored

True Type Fonts
Before you can start using True Type Fonts you need to make sure that

1. You have downloaded the TTF files. Due to it’s size they are in a separate package from the

JpGraph script code.
2. The TTF_DIR constant in jpgraph.php points to the directory where the font files may be found.
3. You installation of PHP supports TTF (most should do)

By default JpGraph will look for fonts in directory “./TTF/ ”

In JpGraph 1.2 the font families and styles supported are listed in Table 2.

Font family Font style

PHP Constant Real name FS_NORMAL FS_BOLD FS_BOLDITALIC FS_ITALIC

FF_COURIER Courier new ? ? ?

FF_VERDANA Verdana ? ? ?
FF_TIMES Times New Roman ? ? ?

FF_HADWRT Lucida Handwriting ?

FF_COMIC Comic Sans ? ?

FF_ARIAL Arial ? ? ?
FF_BOOK Book Antiqua ? ? ? ?

Table 2 Available combination of TTF font families and styles

The use of a an illegal combination will give a runtime error indicating the type of problem, e.g. “Style
not supported for font family”. On additional thing to keep in mind when designing graphs is that even
though TTF may look more appealing from an aesthetic point of view they are much more time
consuming to render and also involves one additional disk access.

Some examples:
SetFont(FF_COURIER); // Courier normal 12 points
SetFont(FF_COURIER,FS_BOLD); // Courier bold 12 points
SetFont(FF_COMIC,FS_BOLD,16); // Comic Sans Serif, bold, 16 points

Adding new TTF fonts
If you have a particular favourite font which doesn’t come as default it is quite easy to add that font to
JpGraph as an extension. There are basically 3 things you need to do:

1. Get the TTF file(s) and add it to your font directory. You need separate files for each of the styles

you want to support. These different files uses the following naming conventions:
Normal font file = <basefilename>
Bold font file = <basefilename>”bd”
Bold italic file = <basefilename>”bi”
Italic file = <basefilename>”i”

2. Define a new constant FF_xxxxx in jpgraph.php which names your font (at the top of the file)

3. Update Class TTF constructor in jpgraph.php with the mapping between your new constant and
the <basefilename>

That’s it!

1.5 Using Anti-Aliasing
From version 1.2 JpGraph supports drawing of anti-aliased lines. There are a few caveats in order to
use this which is discussed in this section.

Note that anti-alising will not be used for either horizontal, vertical or 45 degree lines since they are by
their nature are sampled at adequate rate.

Enabling anti-aliased lines
Anti-aliased lines are enabled by calling the method SetAntiAliasing() in the Image class, so for
example you would normally make the call

$graph->img->SetAntiAliasing()

to enable this feature. The anti-aliasing for lines works by “smoothing” out the edges on the line by
using a progressive scale of colors interpolated between the background color and the line color.

Note: The algorithm used is quite simple. It would be possible to achieve even better result by doing
some real 2D signal processing. However it is my view that doing real time 2D signal processing on a
WEB server would be madness so I deliberately kept it simple. To achieve best visual result always use
a dark line color on a light background.

An example will show that this, quite simple algorithm, gives a reasonable good result. Figure 3 shows
a spider graph with ant without anti-aliasing. One thing to keep in mind when deciding to use anti-
aliasing is that it could have a potentially dramatic effect on the time it takes to generate the image
(compare 0.2s with 2.0, a factor of ten!) (the code for this particular spider graph might be found as
spiderex6.php in the Examples directory, (you might want to see how much faster your machine is to
my old server, but hey it’s a seven year old machine sitting in my basement and doubling as a firewall
as well)

Anti-aliased “gotchas”
There are also a couple of potential limitations (or gotchas) you probably would like to keep in mind
when using anti-aliased lines

1. Anti-aliases lines are much slow er then the normal lines, roughly 5 times slower per line.

Remember that the whole line-drawing algorithm is implemented in PHP since the underlying
graph library (GD) doesn’t support anti-aliased lines.

2. Anti-aliased lines uses up more of the available color-palette. The exact number of colors used is
dependent on the line-angle, a near horizontal or near vertical line uses more colors (number of
lines with different angles uses more colors). Hence it might not be possible to use anti-aliasing
with color -gradient fill since the number of available colors in the palette might not be enough. A
normal palette can keep around 256 colors (I’m not 100% sure of the exact format used in the JPG,
PNG, or GIF standards)

3. Anti-aliased lines will ignore the line width specified. They will always have a width of roughly 1.

Figure 4. Spider graph with and without anti -aliasing enabled.

1.6 JpGraph global defines
In order to control certain behaviours of the library there are a number of DEFINE’s at the top of the
file ‘jpgraph.php’. Their purposes are briefly discussed below. The default values for all these constants
should be fine for most users of the library. However, “power-users” might want to tweak these, hence
this description.

Constant Default value Description
ERR_DEPRECATED False Should the use if deprecated functions and

values give a fatal runtime error?
BRAND_TIMING False Should the time taken to generate an image be

“branded” in the lower left corner of the image?
BRAND_TIME_FORMAT “Generated in: 01.3fs” The actual format string for the time branding.
READ_CACHE True Should JpGraph first look in the cache to see if

the image has already been generated?
CACHE_DIR “./jpgraph_cache” Location of cache directory. Note this directory

must be writable for PHP.
USE_BRESENHAM False Should a PHP implementation of the

Bresenhams’s circle algorithm be used instead
of the built in GD Arc() drawing routine?
(Makes circles look aesthetically better in some
few cases – the drawback being that do circles
in PHP are slower then native GD)

TTF_DIR “./ttf” Location for TTF fonts
DEFAULT_GFORMAT “auto” Which graphic format should be used (auto,

jpg, gif, png) If this value is set to “auto” then
the best available format will automatically be
chosen. The preferred order is “png,gif,jpg”.

1.7 Drawing arbitrary graphic shapes using dummy graphs
Disclaimer: This is an unsupported part of JpGraph.

To make it easy to try out arbitrary graphic drawings with all the normal support of JpGraph (like
caching, anti-aliasing etc) you can crate a dummy graph. This will in affect give you a canvas where
you can use all the drawing primitives in the Image class.

As usual you need to include both jpgraph.php and also the “dummy” extension “jpgraph_dummy.php”

An example to draw a simple line would be

#include <jpgraph.php>
#include <jpgraph_dummy.php>

$graph = new DummyGraph(300,200);

$graph->img->SetColor(“red”);
$graph->img->Line(10,10,100,100);

$graph->Stroke();

1.8 Utility scripts
Disclaimer: This is an unsupported part of JpGraph.

JpGraph 1.2 comes with two utility script to help with color selection and to automatically generate a
test page of images. Please note that this is only tools I use myself which I thought might be useful for
someone else. They are not supported in any shape or form!

Automatic generation of all test images (test-suit)
Running the script “testsuit_jpgraph.php” will generate an index list of all *.php files in the current
directory. This is useful if you run this script from the “Examples” directory. It will then generate an
index list with a link to all the example images. This is the tool used to manage all regression tests
internally in the development of JpGraph.

This script may also be called with a parameter “style” as in

“testsuit_jpgraph.php?style=1”

or

“testsuit_jpgraph.php?style=2”

In the latter case (style=2) the links will be replaced by the actual images. You may then visually
inspect all the generated images.

Color selection and upcoming support for color themes
Running the script “gencolorchart.php” will generate (by default in the cache directory) a number of
images with color samples and also a theme page. Running the script should generate the following
output:

JpGraph color chart
Generating color chart images ...
 1. ./jpgraph_cache/color_chart01.gif
 2. ./jpgraph_cache/color_chart02.gif
 3. ./jpgraph_cache/color_chart03.gif
 4. ./jpgraph_cache/color_chart04.gif
Generating color chart index page.

Generating themes...

1. ./jpgraph_cache/theme01.gif [24 colors in theme 'earth']
2. ./jpgraph_cache/theme02.gif [19 colors in theme 'pastel']
3. ./jpgraph_cache/theme03.gif [15 colors in theme 'water']
4. ./jpgraph_cache/theme04.gif [11 colors in theme 'sand']

Generating theme index page.

Work done in: 3.64 seconds.

See Colorchart
See Index of themes

Figure 5. Output after running gencolorchart.php

The “Colorchart” is simple a page with all the named colors available in JpGraph. You can see all the
colors by following the link “Colorchart” at the bottom of the page. The reason for braking up the
colors in separate images is just the fact that the maximum number of colors in one image is limited by
the palette size.

Note: This is a good example of the inefficiency of the GIF format as compared to PNG. Each of the
above generated GIF images for the color charts are roughly 100K while the corresponding images
generated as PNG are only around 13K in size.

The “themes” index is just a collection of colors that make up a certain theme, i.e. “earth”, “pastel” etc.
Themes are an upcoming feature in JpGraph 1.3. This utility was just intended to help me to easily
view and pick what colors are/should be present in a certain theme. By using a certain theme your
graph will automatically draw colors from that theme, so for example all the default colors for the pie
slices in a pie graph will be taken from the theme. Please note that the selection of colors in a specific
theme is based on my personal judgement and may not agree with you. If you have additional themes
you would like to use please send me a note on jpgraph@aditus.nu

As an example the “earth” (a “professional” looking color theme) have the following tentatively
composition:

Figure 6. The colors in the "earth" theme (subject to change for 1.3!).

As opposed to the more colorful “pastel”-theme shown below

Figure 7. The colors in the "pastel" theme (subject to change fror 1.3!)

	Introduction
	1.1 Version
	1.2 Features
	1.3 Planned future addition
	1.4 Known bugs and omissions
	1.5 Acknowledgements
	1.6 Implementing an OO library in PHP4
	1.7 Getting the latest version
	1.8 Reporting bugs and suggested improvements
	1.9 Software License

	Quick Start
	1.1 Generating images with PHP
	Line graphs
	1.2 A first example
	1.3 Adding plot marks to line graphs
	1.4 Adding several plots to the same graph
	1.5 Adding a second Y-scale
	1.6 Adding a legend to the plot
	1.7 Using the "Step style" to render line plots
	1.8 Using logarithmic scale
	1.9 Using different combination of scales
	1.10 Adding more gridlines to the plot
	1.11 Specifying the labels for X-axis
	1.12 Adjusting the ticks on a text scale
	1.13 Using filles line graphs
	1.14 Using accumulated line graphs

	Bar Graphs
	1.15 Using elementary bar graphs
	1.16 Adjusting the width of the bars
	1.17 Using grouped bar graphs
	1.18 Using accumulated bar graphs
	1.19 Using grouped accumulated bar graphs

	Error Plots
	1.20 Using error plots
	1.21 Using line error plots
	1.22 Combining different types of plots
	1.23 Adding text to the graph

	Scatter plots
	1.24 Using scatter plots
	1.25 Using impuls scatter plots

	Pie Graphs
	1.26 Using Pie Plots
	1.27 Changing size and position for the pie chart
	1.28 Adding several pie charts to the same graph
	1.29 Additional modifications to pie plots

	JpGraph Reference
	1.1 Conventions
	1.2 Class overview
	1.3 Public Class references
	6.3.1 Class Graph
	6.3.2 Class Axis
	6.3.3 Class Ticks
	6.3.4 Class Text
	6.3.5 Class Grid
	6.3.6 Class LinearTicks
	6.3.7 Class LinearScale
	6.3.8 Class LogTicks
	6.3.9 Class LogScale
	6.3.10 Class Legend
	6.3.11 Class LinePlot
	6.3.12 Class AccLinePlot
	6.3.13 Class PlotMark
	6.3.14 Class BarPlot
	6.3.15 Class GroupBarPlot
	6.3.16 Class AccBarPlot
	6.3.17 Class ErrorPlot
	6.3.18 Class Plot
	6.3.19 Class ErrorLinePlot
	6.3.20 Class SpiderGraph
	6.3.21 Class SpiderAxis
	6.3.22 Class SpiderPlot
	6.3.23 Class SpiderGrid
	6.3.24 Class ScatterPlot
	6.3.25 Class PieGraph
	6.3.26 Class PiePlot
	6.3.27 Class ImgStreamCache
	6.3.28 Class Image
	6.3.29 Class TTF
	6.3.30 Class Gradient
	6.3.31 Class RGB
	6.3.32 Class FontProp
	6.3.33 Class RotImage

	Manifest constants
	JpGraph Class Hierarchy
	Specifying Fonts
	Using Spider Plots
	1.1 Introduction
	1.2 Creating a simple spider graph
	1.3 Controlling size and position of plot
	1.4 Specifying titles for the axis and legends for plots
	1.5 Specifying gridlines
	1.6 Setting background color and frame
	1.7 Adding several plots to a spider graph

	Using the cache mechanism and other performance related questions
	1.1 Performance considerations
	1.2 Using the cache mechanism

	Advanced Features of JpGraph
	1.1 Using grace percentage on scales
	1.2 Timing the generation of graphs
	1.3 Using color gradient fill
	1.4 Specifying fonts
	1.5 Using Anti-Aliasing
	1.6 JpGraph global defines
	1.7 Drawing arbitrary graphic shapes using dummy graphs
	1.8 Utility scripts

