1 Introduction

1.1 Version

This manual coversversion 1.1 of JpGraph. A 2D graph plotting library for PHP 4.02
and above.

Note that this library will not work with versions prior to PHP 4.02 due to extension
in the object model that is used in this library.

1.2 Features

Thisisatruly OO graph library which makes it easy to both draw a “quick and dirty”
graph with a minimum of code and quite complex graphs which requires a very fine
grain of control. The library tries to assign sensible default values for most parameters
hence making the learning curve quite flat since for most of the time very few
commands is required to draw graphs with a pleasing esthetical |ook.

Some highlights of available features are

?? Flexible scales, supports text-lin, text-log, lin-lin, lin-log, log-lin and log-log

?? Supports both PNG, GIF and JPG graphic formats. Note that the available formats
are dependent on the specific PHP installation where the library is used.

?? Supports caching of generated graphs to lessen burden of aHTTP server.

?? Inteligent autoscaling which gravitates towards esthetical values, i.e. multiples of

2:sand 5:s

Fully supports manual scaling, with fine grain control of position of ticks

User specified grace for autoscaling

? Supports up to two different y-scale, it is possible to have different left and right

y-scale and add plots to both

?? Supports, line-plots, filled line-plots, accumulated line-plots, bar plots,
accumulated bar plots, grouped bar plots, error plots, line error plots, scatter plots,
impuls plots, spider (ak.a. Web) plots and pie charts.

?? Supports unlimited number of plots in each graph, makes it easy to compose

complex graph which consists of several plot types

User specified position of axis

Supports color gradient fill in seven styles

? Designed as aflexible OO framework which makes it easy to add new types of

plots

Supports automatic legend generation

Supports both vertical and horizontal grids

Supports anti-alising of lines

Supports rotation of linear graphs

More then 400 named colors

Designed modularly — you don’t have to include code which isn’t used

NENEN

33 3

NI IIISN

In addition to these high level features the library has been designed to be orthogonal
and very coherent in itS' naming convention. For example, to specify color each
object (i.e. axis, grids, texts, titles etc) within the graph implements the method
SetColor() with the same signature.

1.3 Planned future addition

All the following features, which have not been marked as tentatively, will be added.
The timeframe for these versions are:

22 Version 1.3 Q2 2001
2?2 Verson 2.0 Q4 2001

No time frames have been determined for version 2.x and above. If you like these
timeframes to move forward get involved in the development. Changes, bugfixes and
additions are always welcome.

For the latest upate on planned future version see the web-site for JpGraph at
www.aditus.nu/[pgraph/

1.4 Known bugs and omissions

?? Rounding errors. Some combination of image size and scale span might on some
points display a one-pixel difference between scale labels and plot points. Thisis
for al practical purposes not visually detectable. A walkthrough of all
computation routines within the library will be necessary to assure that they are al
rounded/truncated the exact same way.

1.5 Acknowledgements

Theidea for writing this library grew out of my own needs for a high quality graph
drawing library for PHPA4. Before reinventing the wheel | searched the net to see if
there where anything already available that would meet my needs. When searching |
found three other PHP graph plotting libraries:

1. “chat 0.3" http://quimby.gnus.org/circus/chart/chart-0.3.tar.gz, by Lars Magne
Ingebrigtsen

2. “ykcee.php”, http://ykcee.sourceforge.net

3. “phplot.php”, http://www.phplot.com

All these libraries implements some fine graphic features but unfortunately none of
those completely fulfilled my needs either for available functionality (for example
none of these supported both two Y -scales, auto-scaling, and logarithmic scales), or
genera flexibility, | especially needed the option of two Y -scales, which none of the
above packages supported. My own preference for design was closest to “chart 0.3
so | started by fixing some small bugs in that package and adding some new features.
However | soon realized that to add all the features and flexibility | wanted to “chart
0.3” it would require a complete rewrite since the origina design wasn't flexible
enough, especially adding a second Y -scale would require a more flexible OO
architecture.

Since at the time | was also interested in giving PHP a try to see how well it would
support a fully object oriented design so | started designing this library. The library is
completely written from scratch but | have taken some ideas, especialy the caching
feature from “chart 0.3” and implemented this.

I’m therefore thankful for those ideas. Any bugs and faults within the code are
completely my awvn.

1.6 Implementing an OO library in PHP4

In terms of OO support PHP is still at loss to Java, Eiffel or C++ but since it ways
been my view that OO design is more a state of mind then of implementation details it
is still possible to arrive with a decent OO design even in PHP. One of the big
obstacles is probably the very different assigning semantics used by PHP as compared
to other OO languages since it is aways copies of the object that is passed around by
default and not references. This took some time for me personally to get used to
(giving my own background in OO design in Java, Eiffel and C++).

There is also a bug (present in all versions <=4.04pl1) that makes it impossible to use
areference to the * $this' pointer in the constructor. This has an easy workaround by
adding an extra method, say Init(), which is called immediately after the constructor
and may safely use areference to ‘ $this' pointer.

As an example of JpGraph’'s OO features thisis, to my knowledge, the only piece of
PHP code to fully implement the Observer pattern.

1.7 Getting the latest version

The latest version of jpgraph can always be found on http://www.aditus.nu/jpgraph/
The current version as of thiswriting is 1.2

Note. | keep a very ssimple version scheme to avoid the version number inflation that
seems to be going on, this means

1x->1x.1 Bugfix releasefor version 1.x

1x->1.(x+1) Added functionality. Keeping backwards compatibility

1x ->20 Substantially new functionality which might break backward
compatibility

1.8 Reporting bugs and suggested improvements

Bug reports and suggestions are always welcome. | only ask you to make sure that
you read the requirements before submitting bugs and making sure you have an up to
date version of PHP4, the necessary graphic libraries etc. | will unfortunately not be
able to answer standard OO or PHP4 questions.

Please note that this library will not work with versions prior to PHP4.02.

Bug reports and suggestions should be sent to Jpgraph@aditus.nu

1.9 Software License
JpGraph 1.2 is released under GPL (GNU Public License 2.0)

1 Quick start on how to use JpGraph

1.1 Generating images with PHP

As a genera rule each PHP which generates an image must be specified in a separate
file which is then called on in an tag reference. For example, the following
HTML excerpt includes the image generated by the PHP script in “figl.php”

éihg'src="figl.php" bor der=0 al i gn=cent er w dt h=300 hei ght =200>

The library will automatically generate the necessary headers to be sent to the browser
to correctly recognize the data stream as an image of either PNG/GIF/JPEG format.

To get access to the library you will need to include at least two files, the base library
and one or more of the plot extensions. So for example if you want to do line plots the
top of your PHP file must have the lines:

<?php

i ncl ude ("jpgraph. php");

i nclude ("] pgraph_Iline.php");

/1 Code that uses the jpgraph library

?>

Note: You might also use the PHP directive requires(). The difference is subtle in that
include will only include the code if the include statement is actually excuted. While
require() will always be replaced by the file specified. See PHP documentation for
further explanation. For most practical purposes they are identical .

1.2 Afirst example

The following simple example draws a line graph consisting of 10 Y -values

<?php
i ncl ude ("jpgraph. php");
i ncl ude ("j pgraph_Iline.php");

$ydata = array(11,3,8,12,5,1,9,13,5,7);

I/l Create the graph. These two calls are always required
$graph = new G aph(300, 200) ;
$gr aph- >Set Scal e("textlin");

/] Create the linear plot
$l i nepl ot =new Li nePl ot ($ydat a) ;

/] Add the plot to the graph
$gr aph- >Add($l i nepl ot) ;

[/ Display the graph
$gr aph- >St r oke() ;
?>

Figure 1. PHP script for simple graph. (examplel.php)

This script will generate the following graph

15~

1

I I I I I I I I]
" 1 2 3 4 g g 7 g 9

Figure 2. The simplest possible JpGraph

Y ou might note a few things:

?? Boththe X and Y axis have been automatically scaled. We will later on show how
you might control the autoscaling how it determines the number of ticks which is
displayed.

?? By default the Y-grid is displayed in a“soft” color

?? By default the image is bordered and the margins are dightly gray.

?? By default the O label on the Y-axis is not displayed

Thisis a perfect fine graph but we want might to add a few things like
?? A titlefor the graph

?? Title for the axis

?? Increase the margins to account for the title of the axis

To handle this we just need to add a few more lines. (We only show the part of
example 1 we changed)

/] Increase the margins (left,right,top, bottom
$gr aph- >i ng- >Set Mar gi n(40, 20, 20, 40) ;

/1 Add graph and axis title

$graph- >titl e >Set (“Exanple 2”);

$gr aph- >xaxi s->title->Set(“Xtitle”);
$graph- >yaxi s->title->Set(“Y-title");

Figure 3. Example 2. Adding a graph title and axis title

The graph will now look like this

Example 2

15~

¥-title

Figure 4. A graph with added titles.

Again a couple of things should be noted

?? A default font and size is used for the text

?? The default position for the title of the graph is to be centered at the top

?? The default position for the title of the x-axis is the far right and for the y-axis
centered and rotated in a 90° angle.

A nice change would now be to have all thetitlesin abold font and the line plot a
little it thicker and in blue color. Let’s do that

$graph- >titl e >Set Font (FONT1_BOLD) ;
$gr aph- >yaxi s->title- >Set Font (FONT1_BOLD) ;
$gr aph- >xaxi s->titl e- >Set Font (FONT1_BOLD) ;

$l i nepl ot - >Set Col or (“bl ue”);
$linepl ot - >Set Wei ght (2); // Two pi xel w de

Y ou might by now have noticed that you apply the same methods to different objects
within the graph. Thisis something that isared line in this OO library. So far you
have seen that a graph has aftitle, an x-axis, an y-axis etc. In the reference section a
complete list of available objects and methods are listed. In amost most cases you
will learn about a new method, like SetColor(), which you could then apply to other
objects. Asan example, let’smake the Y -axis red. As you might guess thisis
accomplished by the line:

éBg.r a.ph- >yaxi s- >Set Col or (“red”);

Or perhaps making the Y -axis a little bit thicker (note that this will aso affect the Y -
grid thickness)

$g} a.ph- >yaxi s- >Set Wi ght (2) ;

As afinal touch on this first example lets add a shadow to the frame surrounding the
image. By default this is switched off. This is done by adding the line

$g.r a'ph- >Set Shadow() ;

Exanple 3

15+

Y-title
=
=

o
™ ™TT

H=title

Figure 5. The final appearance of the graph after changing the properties of the Y-axis and
adding a shadow to the frame.

1.3 Adding plot marks to line graphs

It might sometimes be desirable to highlight the data-points with marks in the
intersection between the given x and Y -coordinates. This is accomplished by
specifying the wanted plot mark type for the “mark” property of the line graph.

As of JpGraph 1.0 the following marks are available:

?? MARK_SQUARE, A filled square

?? MARK_UTRIANGLE, A upward pointing triangle

?? MARK_DTRIANGLE, A downward pointing triangle
?? MARK_DIAMOND, A diamond shape

2?2 MARK_CIRCLE, A nonfilled circle.

Let's add diamond marks to the graph in example 3 above. This is accomplished by adding the single
line

$l i nepl ot - >nar k- >Set Ty pe(MARK_DI AMOND) ;

The resulting graph is shown below

Exanple 3,1

15

=
k=

Y-title

Figure 6. Line graph with plot marks in the intersections.

The colors of the marks will, if you don’'t specify them explicitly, follow the line
color. Please note that if you want different colors for the marks and the line the call
to SetColor() for the marks must be done after the call to the line since the marks
color will always be reset to the lines color when you set the line.

1.4 Adding several plots to the same graph
What if we want to add a second plot to the graph we just produced? Well, thisis
quite straightforward and just requires two step:

1. Create the second plot
2. Add it to the graph

To create the second plot we need some data (we could of course use the same data as
in example 1 but then we wouldn’t be able to see the new plot!)

The following lines show how to create the new plot and add it to the graph (we only
show the new lines — not the full script)

$ydata2 = array(1,19, 15,7, 22, 14,5, 9, 21, 13);
$l i nepl ot 2=new Li nePl ot ($ydat a2) ;

$l i nepl ot 2->Set Col or (" orange") ;

$l i nepl ot 2->Set Wi ght (2) ;

éBg.r a.ph- >Add($l i nepl ot 2) ;

The graph resulting from these changes will look like

o5 Exanple 4

20

15

. A

Y-title
>

Figure 7. Adding several plots to the same graph.

Y ou should now note that

?? TheY-scale has changed to accommodate the larger range of Y -values for the
second graph.

?? If you add severa plots to the same graph they should contain the same number of
data points. Thisis not a requirement the graph will be automatically scaled to
accommodate the plot with the largest number of points but it will not look very
good since one of the plot end in the middle of the graph.

1.5 Adding asecond Y-scale

Asyou saw in the preceding example you could add multiple plots to the same graph
and Y -axis. However what if the two plots you want to display in the graph has very
different ranges. One might for example have Y -values like above but the other might
have Y-values in the 100:s. Even though it is perfectly possible to add them as above
the graph with the smallest values will have a very low dynamic range since the scale
must accomplish the bigger dynamic range of the second plot.

The solution to thisis to use a second Y -axis with a different scale and add the second
plot to this Y-axis instead. Let’stake alook at how that is accomplished.

First we need a nice data array with large values

$y2data = array(354, 200, 265, 99, 111, 91, 198, 225, 293, 251) ;

Then we need to add a second linear Y axis to the graph

$gr aph- >Set Y2Scal e("1in");

and finally we create a new line plot and add that to the second Y -axis. Note that we
here use a new method AddY 2() since we want this plot to be added to the second Y -
axis (version 1.0 of jpgraph only supports two different Y-axis and Y-scales.)

$I | n.epl ot 2=new Li nePl ot ($y2dat a) ;
$gr aph- >AddY2($l i nepl ot 2) ;

To make the graph alittle bit more esthetical pleasing we use different colors for the
different plots and let the two different Y -axis get the same colors as the plots.

$I | n.epl ot 2->Set Col or (" or ange") ;
$l i nepl ot 2->Set Wi ght (2) ;
$gr aph- >Set Col or (" orange");

The fina graph will now look like this:

e Exanple 5

=
L=
T

Y-title

[|
T T T T

Figure 8. A graph with two different Y-axis and a plot for each Y-axis

1.6 Adding alegend to the plot

To know what different plots stand for it is custom to add a legend to the graph that
explains what each plot represents. Thisis very easy to do. We only need to specify
the legend text for each plot and most likely where we want the legend to be
displayed. Let’ sfirst see what we get with the default settings so we just add the text
we want associated with each plot, let’s say “Plot 1” and “Plot 2”. Thisis done by the
following two added lines

$l i nepl ot - >Legend- >Set (“Pl ot 1");
$l i nepl ot 2->Legend- >Set (“Pl ot 2");

If we do this we get aresulting graph as

Exanple 5
150 Mrict 1

Opiot 2

=
L=
T T

Y-title

[|
T T T T

Figure 9. Graph with a legend

As you can see the legend gets automatically sized depending on how many plots
there are that have legend texts to display. By default it is placed with it’s top right
corner close to the upper right edge of the image. Depending on the image you might
want to adjust this or you might want to add a larger margin which is big enough to
accompany the legend. Let’s do both. First we increase the right margin and then we
place the legend so that it is roughly centred. We will also enlarge the overall image
s0 the plot area doesn't get to squeezed. (We don’t show the new values for the
margins just the new method to position the legend.)

éBg'r a.ph- >| egend->Pos(0.05,0.5,"right","center");

Thiswill then generate the following graph

e Exanple 6

=
L=
T T

Y-title

\/ Mriot 1
Orlot 2

[|
T T T T

Figure 10. Graph with adjusted legend

The above method deserves some explanation since it might not be obvious. Y ou
specify the position as percentage of the overall width and height of the entire image.
This makes it possible for you to resize the image within disturbing the relative
position of the legend. We will later see that the same method is just to place arbitrary
text in the image.

To give added flexibility one must also specify to what edge of the legend the position
given should be relative to. In the example above we have specified “right” edge on

the legend for the for the X-axis meaning that the distance between the right edge of
the legend and the right edge of the image is 5% of the images entire width.

Allowed values for the X-position are [“left” ,” center”, “right”], and for the Y -
position [“top”,” center”].

By default the text in the legend are stacked on top of each other. The other possibility
to layout the legend is horizontaly, i.e. the text is place horizontally after each other.
Y ou decide which way you want to have the legend by a call to the method
“SetLayout($layout)” alowed values for $layout are

?? LEGEND_HOR
?? LEGEND_VERT

Lets illustrate this by changing the legend in the preceding example to use horizontal
layout instead and place the legend at the bottom of the image. This is accomplished
by the lines

$gr aph- >i ng- >Set Mar gi n(40, 40, 20, 70) ;

$g} a'ph- >| egend->Set Layout (LEGEND_HOR) ;
$gr aph- >l egend->Pos(0. 5, 0. 85, "center", "center");

Exanple 6

/\\/\/

0 1 2 3 4 3 f 7 a 9
H-title

Y-title

|IP1.:.t 1 Opiot 2

Figure 11. Plot with alternative layout of legend.

1.7 Using the “Step style” to render line plots

Step style refers to an aternate way of rendering line plots by not drawin a direct line

between two adjacent points but rather draw two segements. The first segment being a
horizontal line to the next X-value and then a vertical line from that point to the crrect
Y -value. Thisis perhaps easier demonstrated by an example.

Y ou specify that you want the plot to ber rendered with this style by calling the
method SetStepStyle() as

$I | nlepl ot 1->Set St epSt yl e()

For example, the following graph can be generated:

Exanple with Step Style line plot

oo
[=1]
2o
é 1]
L
20
1 1 1 1 1
0 4 g 12 16 20
H=Axis

Figure 12. Example of lineplot with the "step style”

1.8 Using alogarithmic scale

Using a logarithmic scale requires you to include the logarithmic add on module in
“jpgraph_log.php”. So you must have the line include(*jpgraph_log.php”) on the top
of your code. To lllustrate how to use alogarithmic scale let's make theright Y scale
in the previous example a logarithmic scale. This is done by the line

$gr aph- >Set Y2Scal e("1 0g") ;

The resulting graph will then be as illustrated below

\/. Mriot 1
Opiot 2

15 Exanple 6

=
L=
T

Y-title

o
T T T T

Figure 13. Graph with a logarithmic Y2 scale.

If you also wanted the normal (left) Y scale to be logarithmic you would have had to
change the SetScale() method call to

$g}abh->8etScaIe("textIog");

1.9 Using different combination of scales

As you saw in the previous example it is possible to use different types of scales. The
supported types are

?? Linear scae. Both X and Y axis
?? Logarithmic scale. Both X and Y axis

?? Text scale. Only on X axis

Any combination of these may be used. Linear and logarithmic scales are pretty
straightforward. The text scale might deserve some explanation. The easiest way to
think of the text scale is as alinear scale consisting of only natural numbers, i.e.
0,1,2,34,... . Thisscale is used when you just have a number of Y-valuesyou want to
plot in a consecutive order ard don’t care about the X-values. For the above example
it will also work fineto use alinear X-scale (try it!). However, the scale is now

treated as consisting or real numbers so the autoscaling, depending on the size of the
image an the number of data points, might decide to display other labels then the
natural numbers,, i.e. alabel might be 2.5 say. Thisis not going to happen if you use a
text scale.

If no X-scale is given the whole numbers in consecutive order will be used as X-
coordinates of the supplied Y -points as displayed in all the previous examples.

To specify which combination of X and Y scales you want to use a parameter is
passed in the SetScale() method of the graph. The following values are alowed

“linlin” Linear X, Linear Y
“linlog” Linear X, Log Y
“textlin” Text X, Linear Y
“textog” Text X, LogVY
“loglin” Log X, Linear Y
“loglog” Logx,LogY

3IIIIA

So for example to specify a Text X scaleand Log Y scale you will call

$gr aph- >Set Scal e(“textlog”);

To specify the Y2 axis you used use “half” of the parameter string, i.e to specify a
linear Y2 scale you call

$gr aph- >Set Y2Scal e(“1i n")

Note. The behaviour of specifying “Text” for a'Y-scale is undefined and might even
blow up your server...

Specifying alog scale for the normal Y -axis will then generate the following image

100 Exanple 6

Y-title

1o " (MPLot 1
i Orict 2

Figure 14. Using different Y and Y2 scales.

1.10 Adding more gridlines to the plot

By default only the Y-axis have a grid and then only on major ticks, i.e. ticks which
have a label. It is of course possible to change this. Both the X , Y and Y2 can have a
grid. It is also possible to let the gridlines aso be drawn on the minor tick marks, i.e.
ticks without alabel. Lets see how we can apply this to the graph above.

The grid is modified by accessing the xgrid (or ygrid) component of the graph. So to
disply minor grid lines for the Y graph we make the call

$gr aph- >ygri d >Show(true, true);

The first parameter determines if the grid should be displayed at all and the second
parameter determines whether or not the minor grid lines should be displayed.

If you instead wanted the gridlines to be displayed for the Y 2 axis instead you would
call

$gr aph- >y2gri d->Show(true, true);

Note. In general it is not a good idea to display both the Y and Y 2 gridlines snce the
resulting image becomes difficult to read for a viewer.

We can also enable the X-gridlines with the call

$gr aph- >xgri d >Show(true, f al se);

The resulting image will now look like

100 Exanple 7

Y-title

1o s (MPLot 1
¥ Orict 2

Figure 15. Graph with both X and Y gridlines.

Here we might show a nice feature of jpgraph. Sincethe Y (and Y 2) scales first label
(1 and 10) is quite close to the X-labels we might want to not display the first tick
label. This can be done with a call

To the method SupressFirst() on the Tick object in the scale for each axis as

$gr aph- >yaxi s- >scal e- >ti cks->SupressFirst();
$gr aph- >y2axi s->scal e->ti cks- >SupressFirst();

The graph will now look as

100 Exanple 8

Y-title

1o s (MPLot 1
¥ Orict 2

Figure 16. Graph with the first tick marks on the Y-axis suppressed.

1.11 Specifying the labels for X-axis

Y ou might want to have specific labels you want to use for the X-axis when this has
been specified as a“text” scale. In the previous example each Y - point might represent
a specific measurement for each of the first 10 month. We might then want to display
the name of the months as X -scale. This can be done as follows.

i.Bd-at .ax=ar ray("Jan", " Feb","Mar", " Apr","Maj ", "Jun", "Jul y", "aug”, "Sep", " Cct");
$gr aph- >xaxi s- >Set Ti ckLabel s($dat ax) ;

Thiswill then result in the following graph

100 Exanple 9

1o s (MPLot 1
¥ Orict 2

Y-title

| | | | | | |
Jan Feb Mar Apr Maj Jun Jul aug Sep Oct
H-title

Figure 17. Graph with specified labels for each tick of the X-axis.

It is also perfectly lega to override the default labels for the Y (and Y 2) axisin the
same way, however there is seldom need for that. Please note that the supplied labels
will be applied to each major tick label. If there are insufficient number of supplied
labels the non-existent positions will have empty labels.

1.12 Adjusting the ticks on a text scale

As can be seen in the previous example (9) the X-axisis dlightly cluttered with the
labels very close to each other. We might rectify this by either enlarging the image or
just displaying every second tick label on the xaxis.

Specifying that we only want to print every second label on the axis is done by a call
to the method
SetTextTicks() as

$gr aph- >xaxi s- >Set Text Ti cks(2);

There is one important thing to remember with this. The $datax array must be
adapted to only contain every second value aswell! My reasoning behind this
design decision is that when you have many Y -values, perhaps a couple of hundred,
and only wants to have an X label on every 100 you shouldn’'t have to specify al the
labels you don't use.

So now we also change $datax to

$dat ax=array("Jan","Mar","Maj ", "Jul y", "Sep");

Theresulting graph will now look more esthetical pleasing as

100 Exanple 18

1o E (MPLot 1
¥ Orict 2

Y-title

| | |
Jan Mar Ma,j Jul SER
H-title

Figure 18. A graph with the X-ticks adjusted to only display every second Major tick.

1.13 Using filled line graphs

Using afilled line plot is not much different from using a rormd line plot, in fact the
only difference is that you must call the method SetFillColor() on a normal line plot.
Thiswill then fill the area under the line graph with the chosen color. So for example
plotting a filled “orange’ line plot you would add the line

:'Isl | népl ot - >Set Fi | | Col or (“orange”);

If you look closely at aline-plot you will see that the normal line is still there with the
color you specified with a previous call to SetColor(). IF you don’t wont this
bounding line to bee visible just set it to the same color as the fill.

Note 1. If you add multiple filled line plots to one graph make sure you add the one
with the highest Y -values first since it will otherwise overwrite the other plots and
they will not be visible. Plots are stroked in the order they are added to the graph, so
the graph you want front-most must be added last.

Note 2. When using legends with filled line plot the legend will show the fill color
and not the bounding line color.

1.14 Using accumulated line graphs

Accumulated line graphs are line graphs that are “ stacked” on top of each other. That
isthe valuesin the supplied data for the Y-axis is not the absolute value but rather the
relative value from graph below. For example if you have two line graphs with three
points each, say [3,7,5] and [6,9,7]. The first graph will be plotted on the absolute Y -
values [3,7,5] nut the second plot will be plotted at [3+6, 7+9, 5+7], hence the values
of the previous graphs will be used as offsets.

Y ou may add any number of graphs together. If you want to use three line plotsin an
accumulated line plot graph you write the following code

./l First create the individual plots

$pl = new Li nePl ot ($datay_1);
$p2 = new Li nePl ot ($dat ay_2);
$p3 = new Li nePl ot ($dat ay_3);

/1 Then add them together to forma accunmul ated pl ot
$ap = new AcclLi nePl ot (array($pl, $p2, $p3));

/1 Add the accumul ated line plot to the graph
$gr aph- >Add($ap) ;

Y ou might of course aso fill each line plot by adding the lines

$pl->Set Fi |1 Col or (“red”):
$p2->Set Fi | | Col or (“bl ue”);
$p3->Set Fi | | Col or (“green”);

Using some appropriate data this might then give a graph perhaps like the one showed
in the figure below

Exanple 17

Y-title

0 2 4 g g 10 1z 14 16
H-title

Figure 19. Example of Accumulated filled line plot.

1.15 Using elementary bar graphs

Version 1.0 of jpgraph only supports 2D vertical bar plots. Before you can use any bar
plots you must make sure that you included the file “jpgraph_bar.php” in your script.

Using bar plotsis quite straightforward and works in much the same way as line plots
which you are aready familiar with from the previous examples. Assuming you have
adata array consisting of the values [12,8,19,3,10,5] and you want to display them as
abar plot. Thisis the smplest way to do this:

$dat ay=array(12, 8, 19, 3, 10, 5) ;
$bpl ot = new Bar Pl ot ($dat ay) ;
$gr aph- >Add($bpl ot) ;

Thiswill then display agraph as

Exanple 18

20 _—
15F

tof

Y-title

Figure 20. The simplest form of bar graphs

To have the bars filled with a solid color you must invoke the SetFillC olor() method
on the plot. So adding the line

$bpl ot- >Set Fi | | Col or (“orange”);

will generate the following graph (no big surprise here..)

Exanple 19

20
15F

1of

Y-title

A-title

Figure 21. Filled bar graphs with default width.

Y ou should note from the previous two graphs that bar graph gets automatically
centred when using as text xscale. If you were to use a linear scale they would
instead Start at the left edge of the X-axis.

1.16 Adjusting the width of the bars

By default the width of the bars are 40% of the mgjor tick marks, i.e. the distance
between two labels on the x-axis. To change this you will have to invoke the method
SetWidth() with the percentage you would like to use instead, so for example having
the bar graphs fill out the complete graph we specify awidth of 100% (i.e. 1.0)

$bpl ot- >Set Wdt h(1. 0)

This would then generate the graph

26 Exanple 28

13

10

Y-title

Figure 22. Bar graphs with a width of 100%

1.17 Using grouped bar graphs

These types of bars make is easy to group two or more bars together around each tick.
The bars will be placed immediately beside each other and as a group centred on each
tick mark. An example will make this clear.

}/. Sbne dat a
$dat aly=array(12, 8, 19, 3, 10, 5) ;
$dat a2y=array(8, 2, 11, 7, 14, 4);

I/ Create the bar plots

$blpl ot = new Bar Pl ot ($dat aly);
$blpl ot ->Set Fi | | Col or (" or ange") ;
$b2pl ot = new Bar Pl ot ($dat a2y) ;
$b2pl ot ->Set Fi | | Col or (" bl ue");

/| Create the grouped bar pl ot
$gbpl ot = new G oupBar Pl ot (array($blpl ot, $b2pl ot));

[/ ...and add it to the graPH
$gr aph- >Add($gbpl ot) ;

The above script will now generate the following image

. Exanple 21

Figure 23. Example of grouped bars

There is no limit on the number of plots you may group other then purely visudly, it
might be hard to see a couple of thousand plots gr ouped together...

If you use the SetWidth() method on the GroupBarPlot() this will affect the total
width used by all the added plots. Each individual bar width will be the same for all
added bars. The default width for grouped bar is 70%.

So calling

$gbpl ot ->Set W dt h(0. 9) ;

would have the affect of generating the following image

20, Exanple 22

15F

10

Y=-title

H-title

Figure 24. Grouped bar when the width has been specified as 90%

1.18 Using accumulated bar graphs

The final varieties of group bars you can have are accumulated bars. They work in
much the same way as accumulated line plots described above. Each plot is stacked
on top of each other. An example makes this clear. Let’'s use the same data as in the
two examples above but instead of grouping the bars we accumulate (or stack) them.
The code would be very similar (actually only one line has to change)

$abpl ot = new AccBar Pl ot (array($blpl ot, $b2plot));

This would then generate the following graph.

e Exanple 23

30

20 -

plnfln

Y=-title

H-title

Figure 25. Accumulated bar plot.

As you can see each plot is stacked on top of each other.

1.19 Using grouped accumulated bar graphs

It is perfectly possible to combine the previous bar types to have grouped
accumulated bar plots. Thisis done by just adding the different accumulated plotsto a
group bar plot, for example the following code would do that

I/l Create all the 4 bar plots
$blpl ot = new Bar Pl ot ($dat aly);
$blpl ot ->Set Fi | | Col or (" or ange") ;
$b2pl ot = new Bar Pl ot ($dat a2y) ;
$b2pl ot ->Set Fi | | Col or (" bl ue");
$b3pl ot = new Bar Pl ot ($dat a3y) ;
$b3pl ot ->Set Fi | | Col or ("green");
$b4pl ot = new Bar Pl ot ($dat ady) ;
$b4pl ot ->Set Fi |l | Col or ("red");

/] Create the accunul ated bar plots
$ablpl ot = new AccBar Pl ot (array($blpl ot, $b2plot));
$ab2pl ot = new AccBar Pl ot (array($b3pl ot, $b4plot));

/] Create the grouped bar pl ot

$gbpl ot = new G oupBar Pl ot (array($ablpl ot, $ab2plot));

[/ ...and add it to the graPH
$gr aph- >Add($gbpl ot) ;

The resulting plot would now ook like

e Exanple 24

TLr

H=title

Figure 26. Combining both accumulated and grouped bar plots.

1.20 Using error plots

Error plots are used to visudly indicate uncertain data points. Thisis done by for each

X vaue give both a minimum and a maximum Y -value.

The following example illustrates a smple error bar. We will have 5 points, so we
need 10, so we need 10 Y -values. We aso would like the error bars to be red and 2
pixels wide. All thisis accomplished with (assuming the same basic graph as we used

in previous examples)

$errdatay = array(11,9, 2, 4, 19, 26, 13,19, 7, 12);
$er r pl ot =new Er r or Pl ot ($er r dat ay) ;

$errpl ot- >Set Col or ("red");

$err pl ot- >Set Wi ght (2) ;

$gr aph- >Add($errpl ot) ;

The resulting graph would now look like

30 Exanple 13

27]
20

n
2
= 15]
1
> 10]
5
1
1 1 1 1
Jan Fek Mar Apr May

H-title

Figure 27. A simple example of error plot.

Y ou might notice that there is one displeasing esthetical quality of this graph. The X-
scale isjust wide enough to just accompany the number of error bars and hence the
first bar is drawn on the Y -axis and the and last bar just at the edge of the plot area.
To adjust this you might call the SetCenter() method which will adjust the graph so
that each X-point is centred in the middle of each mgjor scale tick. The following
example illustrates this

$err pl ot- >Set Cent er () ;

The resulting plot will now look more esthetic pleasing as

30 Exanple 14

27]
20

o
=
- 15]
¥
= 10f I I
5
1
1 | 1 1 1
Jan Fek Mar Apr May
H=title

Figure 28. Centring an error graph with centred X-points within the major tick marks.

Y ou might also note that the X -labels have aso adjusted to this changed positioning,
as you probably would expect.

1.21 Using line error plots

A line error plot isan error plot with the addition that aline is drawn between the
average vaue of each error pair. You use this type of plot the exact same way you
would use an error plot. The only change is that you must instantiated an
ErrorLinePlot() instead and make sure you have included the “jpgraph_line.php”
since the line error plot makes use of the line plot class to stroke the line, hence

$ei p'I ot =new ErrorLi nePl ot ($errdatay);

To control the various properties of the line drawn the “ling” property of the error line
plot may be accessed. So, for example, if you want the line to be 2 pixels wide and
blue you would have to add the following two lines

$el pl ot ->I i ne- >Set Wi ght (2) ;
$el pl ot ->| i ne- >Set Col or (“ bl ue”);

If we add that line to the previous example we will get the following graph

30 Exanple 15

23
20
15

Y-title

10

()]

1 1 1 1 1
Jan Feb Mar Apr May
X-title

Figure 29. Example of a line error plot.

You may of course add legends to none, one or both of the line types in the above
graph. So for example if we wanted the legend “Min/Max” for the red error bars and a
legend “Average’ for the blue line you would have to add the lines

$err pl ot- >Set Legend(" M n/ Max") ;
$errpl ot- >l i ne->Set Legend(" Aver age") ;

The resulting graph will now look like (note we are using the default placement of the
legend box)

Exanple 16

30 M MinsMax
o5 [| Average
u 20
=
- 15
1
= 10

o

| | | | |
Jan Feh Mar Apr May
H-title

Figure 30. Line error plot with legends.

1.22 Combining different types of plots

It is perfectly legal to add severa different plot types to the same graph. It is therefore
possible to mix line plots with (for example) filled bar graphs. What you should keep
in mind doing this is the order in which these plots are stroked to the image since a
later stroke will overwrite a previous one. All plots are stroked in the order you add
them, i.e. the first plot added will be stroked first. Y ou can therefore control which
plot is placed in the background and which one is placed in the foreground.

Exanple 16.1

25 O rezult

B Frediction

20

Y-title

Exanple
25 O pesult
- M rrediction
20 —
215k
“
a3
1 10F [
5
5F
C [

0 1 2 3 q 3 B
H-title

Exanple 16.
25 F O result

B Prediction

20|

15F
10 ™

Figure 32. Example of graph with both line plots and bars.

Note the alignment of line plot together with bar plots. Line plots are aligned with the
left edge of the bar. Thisis a deliberate design decision since It looks (to me) less
esthetical to have the line certred in the middle of the bars.

Y-title

Tip: If you want the graph with bars and line start at the very left edge just change the
X-axis to use alinear scale instead of atext scale.

1.23 Adding text to the graph

It is possible to add any number of text strings freely positioned within the image.
Each text string you want to add to the graph must be added as an instance of the Text
class. The positions of the strings are given as percentage of the width/height of the
image. A small example will demonstrate this. Lets add ared text “Thisisatext” to
the middle by centring it horizontal in the graph, .

$t xt =new Text (“This is a text”);
$t xt- >Pos(0.5, 0.5, "centered”);
$t xt- >Set Col or (“red”);

$gr aph- >AddText ($t xt) ;

That'sit! You can also adjust the size and font of the text by using the “ SetFont()”
method. All available text methods are described in the reference section of the
manual.

Note. The alignment you give tells how you want the layout algorithm to treat the
positions you supply.

It is also possible to have the text surrounded by a, possible, filled box. Thisis
accomplished by the SetBox() method.

$t xt- >Set Box(“whi te”, " bl ack”, true);

The above line will add a textbox with a white background, black frame and a drop
shadow. Thisisillustrated in the figure below

Exanple 16.3
23 F O result

B Prediction

20k

. . —
2 . M

15F /
= C
e . .f []
= 10F ™ |This iz a te:-:tl
3 C

g /|

Figure 33. Example of added text box “This is a text".

1.24 Using scatter plots

Scatter plots are very smple; they plot a number of points specified by their X - and
Y -coordinate. Each point is stroked an the image with a mark as with lineplots.

Even though you would normally supply X -coordinates it is still perfectly possible to
use a text-scale for X-coordinates to just enumerate the points. Thisis especially
usefull when using the “Impuls’ type of scatter plot as is shown below.

Scatter pots are created by including the jpgraph extension “jpgraph_scatter.php” and
then creating an instance of plot type of ScatterPlot(). To specify the mark you want
to use you access the mark with the instance variable “mark” in the scatter plot. The
default isto use an unfilled small circle. An example clarifies this.

i ncl ude(“j pgraph_scatter.php”);
éBs'pll = new ScatterPl ot ($datay, $datax);

$g} a'ph- >Add($spl);

Exanple of scatter plot

Figure 34. Example of scatter plot with default marks.

To change the apperance of the marks you can both fill tem with a specified color and
you may also change their sze. Lets make the circle 10 pixels wide and filled with a
red color. This is done by the lines

$spl- >mar k- >Set Type(MARK_FI LLEDCI RCLE)
$spl- >mar k->Set Fi |l | Col or (“red”);
$spl- >mar k->Set W dt h(10) ;

The resulting plot will now become

Exanple of scatter plot

Figure 35. Example of scatter plot with modified marks.

For acomplete list of available methods for “marks’ see the reference section “ Class
PlotMark”.

1.25 Using impuls scatter plots

A final modification we can do to scatter plot is to change it to a“impuls’ type plot.
This is smple a scatter plot with lines from the x-axis up to the mark. This type of
plot is often used in conjunction with illustration of digital signal analysis (hence the
name |’ ve choosen).

This change is accomplished by calling the Setimpuls() method asin

$spl - >Set | npul s() ;

An example plot (where we use a text X-scale) will now look like

Exanple of impuls =scatter plot

a0

Figure 36. Example of scatter plot with Impuls style.

You may specify the thickness and color for the impuls line with the methods
SetColor() and SetWeight() asin

?$s.pl.- >Set Col or (“ bl ue”);
$spl- >Set Wi ght (2) ;

The modified plot will then look like

Exanple of impuls scatter plot

Figure 37. Example of impuls scatter plot with blue impuls lines.

Y ou may draw impuls graphs without any mark by specifying the mark type as (-1) .
That way only the impuls lines will be drawn. Applying this to the previous graph will
then give the result

i'Bs.pll- >mar k- >Set Type(- 1) ;

Exanple of impuls =scatter plot

aor

Figure 38. Impuls scatter plot with no marks.

1.26 Using Pie Plots

Ince by now you would have afairly good understanding on the principles you will be
pleased to find that Pie plots fit quite nicely in the previous framework.

To Use Pie plots you must include (as usual) the base library and the pile plot
extension “jpgraph_pie.php” . Let’s show the simplest possible complete code for a

pie plot

<?php
i nclude ("j pgraph. php");
i ncl ude ("j pgraph_pie. php");

// Sone data
$data = array(40, 21, 17, 14, 23);

/] Create the Pie Graph. Note you may cach this by adding the
/1 ache file nane as Pi eG aph(300, 300, " SontCacheFi | eName")
$graph = new Pi eG aph(300, 200);

$gr aph- >Set Shadow() ;

/] Set Atitle for the plot
$graph- >title >Set ("Exanple 1 Pie plot");
$graph- >titl e >Set Font (FONT1_BOLD) ;

/] Create graph
$pl = new Pi ePl ot ($dat a) ;
$gr aph- >Add($p1) ;

/[l .. and finally stroke it
$gr aph- >St r oke() ;
?>

The generated graph will the be

Exanple 1 Pie plot
34 8%

Figure 39. The simplest possible pie chart.

Y ou may note afew thing
?7? By default a set of standard color is used
?? By default the percentage for each dice is printed as a legend
?? By default the precision of the percent figures is to use one-decimal
?? By default the first dice aways start at the horizontal axis (at 0 degree angle)
?? By default “Black” is used for lines.

The simplest addition we can do is now to add some explaining legends to what the
different pie-slices stand for. Thisis accomplished by the method Setlegends(), lets
name the legends after the months as an example by adding the line:

$pl->Set Legends(array("Jan", " Feb", "Mar", " Apr", "May"));

which will the generate the graph

Exanple 2 Pie plot
M Jan

34 .5% M Fel

Figure 40. Pie chart with a legend.

1.27 Changing size and position for the pie chart

Changing size and position for the pie plot is accomplished by specifyin the size and
position as percentage values. The size is changed by SetSize() which specifies the
radius of the plot in percentage of whatever is the smallest of width and height of the
image. The center of the pieis set by SetCenter(). An example of how to use these

methods are given in t he next section when we show how we can add severa pie
charts to the same graph.

1.28 Adding several pie chart to the same graph

This is done completely analogues as with adding plots as we have seen before. Just
create some more Pie plots and use the Add() method to add them to the image.
One thing worth keeping in mind in regards to Legends. Since the pie graph only
maintain one legend all the legend texts you add will be added to that legend. It is
therefore most practical to use the same colors to mean the same thingsin each pie
plot.

As an example lets take the previous image and just make four copies of the same pie
plot just smaller so they fit within the image and place them evenly in a square, not
much real use but it's getting late and | run out of imagination for new data....

| have also take the opportunity to set the size if the legend to the smallest font (with
acdl to SetFont()) so | don’t have to make the image to large to fit al the plots.

However, we create the four plots with the lines

/] Create plots

$si ze=0. 13;

$pl = new Pi ePl ot ($dat a) ;

$pl->Set Legends(array("Jan", " Feb", "Mar", "Apr", "May"));
$pl->Set Si ze($si ze) ;

$pl->Set Cent er (0. 25, 0. 32) ;

$pl->Set Font (FONTO) ;

$pl->title->Set ("2001");

$p2 = new Pi ePl ot ($dat a) ;
$p2->Set Si ze($si ze) ;
$p2->Set Cent er (0. 65, 0. 32) ;
$p2->Set Font (FONTO) ;
$p2->title->Set ("2002");

$p3 = new Pi ePl ot ($dat a) ;
$p3->Set Si ze($si ze) ;
$p3->Set Cent er (0. 25, 0. 75)
$p3->Set Font (FONTO) ;
$p3->title->Set ("2003");

$p4 = new Pi ePl ot ($dat a) ;
$p4->Set Si ze($si ze) ;
$p4->Set Cent er (0. 65, 0. 75) ;
$p4->Set Font (FONTO) ;
$p4->title->Set ("2004");

$gr aph- >Add($p1) ;
$gr aph- >Add($p2) ;
$gr aph- >Add($p3) ;
$gr aph- >Add($p4) ;

$gr aph- >St r oke() ;

Note: We only set the legend for the first pie plot since we assume that the other plot
have the same meaning.

You may note that | also used the “title” property for each plot to assign each plot an
individual title. (You may also add other text to the graph by creating instances of
Class Text() and add them to the graph via the AddText() method in the PieGraph
class))

The plot will now become

Exanple 3 Hultiple - Pie plot

M Jsan
2081 20082 W
F4.5% F4.5% O Har
O Apr
[| May

15.5% 15.5%

14.8% 20,02 14.8% 20, 0%

12.2% 12.2%

2883 2884
S4.5%

F4.8%

15.5%

20,02 14.8%

Figure 41. Example of adding several pie plots to the same graph.

1.29 Additional modifications to pie plots
Just a quick note on some additional modifications you might do to pie plots.

72 Hiding labels. You may hide the percentage labels for a plot by a cal to the
method Hi deLabel s()

Changing the colors of the labels by a call to set Font Col or ()

Set precision of percentage figure with a call to method set Pr eci si on()

72 Setting different colors to pie then default by calling set Sl i ceCol ors()

NN

The above are all methods in the PiePlot class. For a complete overview of al the
methods see the reference section.

1 Jpgraph reference

1.1 Conventions

All classes are documented with their private and public methods as well as their parents to clearly
show which methods have been overridden. Since PHP is not a strict typed language | have taken the
liberty of specifying each method with the type you would call it with to make it clearer what is
intended.

When properties are listed their Class (if any) are specified as a normal type. When arguments for
methods have default arguments they are specified.

An overview of available methods are given for each classin a table format. For each class that
extends another class the immediately parent class is also given for reference. Methods which are
overridden in a child class is indicated as strikethrough in the parent class t o emphasise that the
method in the child is used.

1.2 Class overview
The class diagram below shows a simplified version of the overall (simplified) class hierarchy used in
JpGraph.

JpGraph 1.0 Simplified Class Hierarchy
ScatterPlot

AcclinePlot

FontProp SpiderAxis

SpiderPlot

LinePlot

SpiderGrid \

GroupBarPlot

SpiderGraph
Y
Plot BarPlot

Legend AccBarPlot
T — |
\ ErrorPlot
Graph TTF
ImgStreamCache ‘/A‘/. v / —
Axis ., Ticks I LinearTicks
Text ‘/4,
+“—
Uses
LogTicks +—
LinearScale Extends
T Abstract class
LogScale
Last updated: 10 Mar 2001
By: Johan Persson

1.3 Public Class references

The following section describes all the classes used in the library. For each class the file whereit is
defined is specified, and it’s class hierarchy.

6.3.1 Class Graph
Defined in file: jpgraph.php

Public properties

O ass Axis

xaxi s, yaxi s, y2axi s;
Gass Gid
sgrid,ygrid,y2grid,;
Cl ass | mage ing;

O ass Text title;
Public methods

G aph()

Add()

AddY2()

AddText ()

Box()

Set Col or ()

Set Mar gi nCol or ()
Set Frane()

Set Shadow()

Set Scal e()

Set Y2Scal e()

Set Ti ckDensi ty()

St roke()

Private properties & methods
Cl ass LinearScal e xscal e,
yscal e, y2scal e;

Get Pl ot sYM nMax()

St r okeFr anme()

General description

The Graph class is the main container class which controls the creation of the entire graph. Y ou must
aways instantiate one instance to create a graph. Through this class one controls many overall settings
of the image di splayed.

Graph(int $width, int $height, String $cacheName="")

Parameters:

Int width Wdth in pixel of the overall inage generated

I nt hei ght Hei ght in pixel of the overall inmage generated
String cacheNanme Nane for picture in cache.

Description:

Creates anew graph. Thisis often the first call made to set-up a new graph..

If the cache name is specified then the method will first try to locate the named file in the “./cache/”
directory rather then generating the graph on the fly. If the file is not there the graph will be generated
and saved as the specified file. Thisfile is the passed through to the browser.

If no cache name is specified then the graph will always be generated and the cache bypassed.

Before any other operation is performed on the graph a call to SetScale() should be made to finish the
initialisation of the graph.

Returns:
NA

See also:
Class ImgStreamCache

Example:
$graph = new Graph(300,200); // Create a 300x200 big image to work with

Add(&Class Plot)

Parameters:
Cl ass Pl ot Plot to be added to the graph

Description:
Each plot that should be displayed within the graph has to be added to the graph. This method will add
the plot so it will usethe“Left” Y-scale, (the normal Y scale).

Note that since the plot is added as a reference any changes you make to the original plot will also
happen to the plot you have added to the graph.

Returns:
NA

See also:
AddY 2(), SetScale()

Example:

$l i nepl ot = New Li nePl ot ($dat ay) ;

$gr aph- >Add($l i nepl ot);

$l i nepl ot ->Set Col or(“red”); /I WII affect the graph

AddY2(&Class Plot)

Parameters:
Cl ass Pl ot Pl ot to be added to the graph

Description:
Works the same way as Add() but the plot is added for use with the Y2 scale (theright Y scale) instead.

Returns:
NA

See also:
Add(), SetY2Scale()

Example:

$gr aph- >new G aph(300, 200);

$gr aph- >Set Scal e(“linlin");

$gr aph- >Set Y2Scal e(“1i nl og”);

$li nepl ot = New Li nePl ot ($dat ay) ;
$gr aph- >AddY2($l i nepl ot);

AddText(&Class Text)

Parameters:
Cl ass Text Text object to be added to the graph

Description:
Adds an instance of the Text class to the graph, allowing arbitrary text to be placed anywhere in the

graph.

Returns:
NA

See also:
Class Text

Example:

$capti on=new Text (“Figure 1. Tenperature over tine”,0.1,0.8);
$capti on >Set Font (FONT1_BOLD) ;

$gr aph- >AddText ($capti on);

SetBox(Boolean $box=true, Int $weight=1, Color $color="black")

Parameters:

Bool ean $b Flag to set plotarea box on or off
I nt wei ght Li ne wei ght for box

Col or col or Li ne col or

Description:

Thisis used to specify whether the plot - area should have a rectangle around it and the specifics of that
rectangle.

Note: As of version 1.0 the weight parameter is not honoured and hence the box will always be one
pixel wide.

Returns:
NA

See also:
SetFrame()

Example:

$gr aph- >new G aph(300, 200) ;
$gr aph- >Set Scal e(“linlin");
$gr aph- >Box();

SetColor(Color $c)

Parameters:
Col or $c Set the background color for the plot are

Description:
Sets the background color for the plot-area.

Returns:
NA

See also:
SetMarginColor()

Example:
$graph->SetColor(“whea");

SetMarginColor(Color $c)

Parameters:
Col or $c Set the background color for the nargins

Description:
Specifies the color of the area between the plot area and the edge of the image.

Returns:
NA

See also:
SetColor(), SetMargins()

Example:

SetFrame(Boolean $frame=true, Color $color="black", Int $weight=1)

Parameters:

Bool ean frame Flag if the framaround the inage should be drawn or not
Col or col or Col or of the frame

I nt wei ght Li ne weight for the frame

Description:

Sets aframe (rectangle) of the chosen color around the edges of the image.

Returns:
NA

See also:
SetBox()

Example:
$graph->SetFrame();

SetShadow(Boolean $shadow=true,int shadowWidth=4,Color shadowColor=grey40)

Parameters:

Bool ean shadow Flag if the shadow shoul d be displayed or not
I nt shadoww dt h Shadow wi dt h

Col or shadowCol or Shadow col or

Description:

Sets a frame with a shadow around the entire image

Returns:
NA

See also:
SetFrame()

Example:
$graph->SetShadow()

SetScale(String $axtype,int $ymin=1,int $ymax=1,int $xmin=1,int $xmax=1)

Parameters:

String $axtype Type of scale

Int $ynin Mn Y scal e val ue
I nt $ymax Max Y scal e val ue
Int $xnmin Mn X scal e val ue
Int $xmax Max X scal e val ue
Description:

Specifies what kind of scales should be used in the graph. The following combinations are allowed

?? Linear scale. Both X and Y axis
?? Logarithmic scale. Both X and Y axis
?? Text scae. Only on X axis

Any combination of these may be used. Linear and logarithmic scales are pretty straightforward. The
text scale might deserve some explanation. The easiest way to think of the text scale isas alinear scale
consisting of only natural numbers, i.e. 0,1,2,3,4,... . This scaleis used when you just have a number of
Y-values you want to plot in a consecutive order and don't care aout the X -values

To specify which combination of X and Y scales you want to use the $axtype parameter is specified.
The following values are alowed

?? “linlin” Linear X, Linear Y

?? “linlog” Linear X, Log Y
?? “textlin” Text X, Linear Y
?? “textog” Text X, Log Y
?? “loglin” Log X, Linear Y
?? “loglog’ Logx, LogY

Itisnormally recommended to use the autoscaling feature since for most practical purposesit is good
enough. However on rare occasions you might want to specify the limits yourself. Thisis then done by
the rest of the parameters to the method.

Note: If you want to use alogarithmic scale you must make sure that the “jpgraph_log.php” is
included.

Returns:
NA

See also:
SetY 2Scale()

Example:
$graph->SetScale(“textlin”);

SetY2Scale(String $axtype, int $ymin, Symax)

Parameters:

String $axtype Type of scale

Int $ynin Mn Y scal e val ue
I nt $ymax Max Y scal e val ue
Description:

The graph alows two different Y-scales to be used and you can choose which one you want to use for
aspecific plot by the way you are adding the plot to the graph, either by Add() or by AddY 2() method.

This method works in the exact same way for the Y 2 axis as the SetScale() method previously
described.

Allowed values for the $axtype are
?? “lin” Linear scale
?? “log’ Logarithmic scale

Note: If you want to use alogarithmic scale you must make sure that the “jpgraph_log.php” is
included.

Returns:
NA

See also:
SetScale()

Example:

$graph = new Graph(300,200);
$graph->SetScale(“textlin”);
$graph->SetY 2Scale(“log”);

SetTickDensity(int $densy=TICKD_NORMAL, int $densx=TICKD_NORMAL)

Parameters:
I nt $densy Density hint for Y axis autoscaling

I nt $densy Density hint for X axis autoscaling

Description:
This method is used to hint how many ticks the autoscaling should try to fit on each of the axis.
The following defines may be used to hint to the auto-scaling how many ticks should be allocated

?? TICKD_DENSE Small distance between ticks
?? TICKD_NORMAL Default value

?? TICKD_SPARSE Longer distance between ticks
?? TICKD_VERY SPARSE Very few ticks

Returns:
NA

See also:
NA

Example:
$graph->SetTickDensity(TICKD_DENSE); // Many Y-ticks

Stroke()

Parameters:
NA

Description:
Should be the final method called in the script that generates a graph. This will generate the image and
send it back to the browser

Returns:
NA

See also:
NA

Example:
$graph->Stroke()

6.3.2 Class Axis
Defined in file: jpgraph.php

Public properties

Cl ass LinearScal e scal e;
Class Text title;

Public methods

H de()

Hi deFi r st Ti ckLabel ()

Set Col or ()

Set Wi ght ()

SetTitle()

Set Ti ckLabel s()

Set Text Ti cks()

Set Label Pos()

Set Font ()

Private properties & methods
Axi s()

St roke()

General description

The Axis classis used to represent both the X and Y axisin the graph. It is possible to control the
individual properties of the axis such as color, weight, font used for labels, title etc through the method
defined in this class.

Instances

$gr aph- >xaxi s
$gr aph- >yaxi s
$gr aph- >y2axi s

Axis(Class Image &$img, &$aScale, $color="black")

Parameters:

Cl ass | mage &3$i ng Type of scale

Cl ass LinearScal e &aScal e Mn Y scal e val ue
Col or $ymax Max Y scal e val ue
Description:

Creates a new axis. A new axis can be either a X -axis or an Y-axis. To create a new axis one supplies
an Image and a scale. It is also possible to specify the color: Colors may also be specified through the
SetColor() method.

Returns:
NA

See also:
Class LinearScale, Class LogScale, Class Image
Example:

Hide(Boolean $h=true)
Parameters:
Bool ean $h

Description:
Hides the axis if $=true

Returns:
NA

See also:

Example:
$gr aph- >yaxi s- >Hi de()

HideFirstTickLabel(Boolean $flag=false)

Parameters:
Bool ean $fl ag

Description:
If you (for esthetical reason) does not want to display the first tick label you call this method.

Returns:
NA

See also:

Example:

SetWeight(int $weight)
Parameters:
I nt wei ght

Description:
Specify line weight of the axis.

Returns:
NA

See also:
SetColor()

Example:
$gr aph- >yaxi s- >Set Wi ght (2)

SetColor(Color $color)
Parameters:
Col or Col or

Description:
Specified color of sxis.

Returns:
NA

See also:
SetWeight()

Example:
$gr aph- >yaxi s- >Set Col or ()

SetTitle(String $t, String $adj="high")

Parameters:
String $t
String $adj

Description:

Specify title for the axis. The title may also be accessed as the “title” property of the axis. The
title may be adjust to either in the middle, at the high end or at the low end of the axis.

This method is actually a shortcut for $axis->title->Set($t). To change the specifics of the title
(like color or font) you apply the suitable method on the title property.

Returns:
NA

See also:

Example:
$graph->xaxis->SetColor(“red”);
$graph->xaxis->SetFont(FONT1_BOLD);

SetTickLabels(String Array $I)

Parameters:
String Array $I

Description:

Normally ticks are given numeric values corresponding to it’s position on the scale. However it is aso
possible to specify aternative labels, for example you might want to have the name of the months on
the x-axis.

When using this method you should supply avalue for each major tick mark.

Returns:
NA

See also:

Example:
$months = array(“Jan”,“Feb”,“Mar”,“Apr”,“May”,“June”);
$graph->xaxis ->SetTickLabels($month);

SetTextTicks(int $step, int $start=0)

Parameters:
Int $step
Int $start

Description:

When you have specified atext scale for the X-axis by default every whole number is used as a mgjor
tick, i.eif you have 10 data-points the x-axis will have the labels (0,1,2,3,4,5,6,7,8,9). If you have many
data-points you might not want to display all these labels. This method let’s you control which labels
will be displayed.

The first parameter $step specifies that every $step ticks should be displayed. For example
SetTextTicks(2) will cause every second label to be displayed so given the 10 data-points before the
scale will now display (0,2,4,6,8).

The other parameter $start specifies which offset should the scale should start on, For example
SetTextTicks(2,1), will generate the scale (1,3,5,7,9).

If you combine both SetTickLabels() and SetTextTicks() you can fully control which data-points have
your specified text label.

Returns:
NA

See also:
Set Ti ckLabel s()

Example:

$nonth = array(*Feb”,” Apr”,”Jun”,” Aug”, " Cct”, " Dec”) ;
$gr aph- >xaxi s- >Set Text Ti cks(2, 1) ;

$gr aph- >xaxi s- >Set Ti ckLabl es($nont h)

SetLabelPos(int $pos)

Parameters:
I nt $pos

Description:
Specify which side of the axis you want the text labels on. Valid values for $pos are (1, -1)

Returns:
NA

See also:

Example:
$gr aph- >y2axi s->Set Label Pos(-1); // Set labels to the left of the Y2 axis.

SetFont(int $size, String $font="internal")

Parameters:

Int $size
String $font

Description:
Specify font for labels in the axis.

Returns:
NA

See also:
Example:

Stroke(Class LinearScale $otherAxisScale)

Parameters:
Cl ass Linear Scal e $ot her Axi sScal e

Description:

Draws the axis. Since the position of the axisis specified in relation to the other axis it is also necessary
to supply the other scale as a parameter to draw the axis. By default the axis is place at the lower end at
the other axis if not otherwise specified with a call to Pos().

Returns:
NA

See also:

Example:

6.3.3 Class Ticks
Defined in file: jpgraph.php

Public properties

Cl ass LinearScal e scal e;
Class Text title;

Public methods

Set Col or ()

Set Wi ght ()

SupressZeroL abel()
SupressMinorTickMarks()
SupressFirst()

SetPrecision()

SetDirection()

Private properties & methods
C ass | mage ing;

St roke()

Ti cks()

Get M nTi ckAbsSi ze()
Cet Maj Ti ckAbsSi ze()

General description

Abstract base class for the linear and logarithmic ticks. Internal class which does never have to be
instantiated. Responsible for the overall layout and format for tick lines. Note that the actual tick labels
are drawn by the Axis class based on tick position cal culations computed by actual subclasses to this
class.

Instances
$axis->scale->ticks
Ticks(&$scale)

Parameters:
$scal e Scale to fit ticks on

Description:
Construct ticks for the specified scale.

Returns:
NA

See also:
LinerTicks(), LogTicks()

Example:

GetMinTickAbsSize()

Parameters:
NA

Description:
Get distance in pixels between minor tick marks.

Returns:
NA

See also:

Example:

SupressZeroLabel(Boolean $z=true)

Parameters:
$z TRUE/FALSE

Description:
Specify whether alabel with numeric value 0 should be displayed

Returns:
NA

See also:

Example:

SupressMinorTickMarks(Boolean $tm=true)

Parameters:
$tm TRUE/FALSE

Description:
Specify whether minor tick marks should be displayed or not.

Returns:
NA

See also:
Example:

SupressFirst(Boolean $ft=true)

Parameters:
it TRUE/FALSE

Description:
Determine if the first tick mark should be displayed or not. It is sometimes useful to suppress the first
tick mar if the labels from both scales gets very close to each other.

Returns:
NA

See also:

Example:

GetMajTickAbsSize()

Parameters:
NA

Description:
Get distance, in pixels, between Major tick marks.

Returns:
NA

See also:

Example:

Set(real $maj, real $min)

Parameters:
$naj Specify, in world coordinates, the distance between major tick marks
$mi n Specify, in world coordinates, the distance between minor tick marks

Description:
Specify where the major and minor tick marks should be.

Returns:
NA

See also:
Example:

SetPrecision(int $p)

Parameters:
$p Number of decimal points

Description:

Specify how many decimals should be displayed in the automatic labels
Returns:

NA

See also:

Example:

SetDirection(int $dir=1)

Parameters:
$dir -1 for left (or up), +1 for right (or down)

Description:
Specify if the tick marks should be to the left or right side for an Y -axis or on the up or down side for
an X-axis.

Returns:
NA

See also:
SetDirection for class Axis which specifies which side the labels should go on.

Example:

6.3.4 Class Text

Defined in file: jpgraph.php
Public properties

Public methods
Text ()

Set ()

H de()

Center()

Set Col or ()

Set Font ()

Set Box()

Set Ori entation()
Get W dt h()

Get Font Hei ght ()
Private properties & methods
St roke()

General description
Represents a text string which may be added to the graph areain an auxiliary position.

Text(String $txt="",real $x=0, real $y=0)

Parameters:
$ixt Text string to display
$x X-position in percent of image width. O percent isthe left edge

Sy Y-position in percent of image width. O percent is the top edge

Description:
Creates a new text object which may be displayed anywhere within the image. The text object is then
added to a specific graph through the AddText() method in the Graph class.

Returns:
NA

See also:

Example:
$t1 = new Text (“Overvi ew’, 100, 180);
$gr aph- >AddText ($t1);

Set(String $t)
Parameters:

$t Textstring

Description:
Set the text for a previous created Text object.

Returns:
NA

See also:

Example:
$t1->Set (“New title”);

SetBox(Mix $fcolor=array(255,255,255), Color $bcolor=array(0,0,0), $shadow=false)

Parameters:

$f col or Box fill color, or FALSE if no box should be displayed

$bcol or Box frame color
$shadow Specifiesif the box should have a drop shadow
Description:

Specifiesthat the text should be in aframe. If fill color is specified as “nofill” then the text will be
framed but will not have afilled background.

Returns:
NA

See also:
Class Image :: StrokeBoxedText()

Example:

Pos(real $x=0, real $y=0,String $halign="left")

Parameters:

$x X-Coord in percent of image width
By Y-Coord in percent of image width
$haling Horizontal alignment

Description:

Set position and specify alignment.

Returns:
NA

See also:
Class Image :: StrokeText()

Example:

Hide(Boolean $f=true)

Parameters:
$f TRUE/FALSE

Description:
Hide the text. The test will not be drawn.

Returns:
NA

See also:

Example:

SetFont(int $size, String $name="internal")
Parameters:

$size

$name

Description:
Specifies text font. See Image:: SetFont() for a detailed description.

Returns:

NA
See also:

Example:
$t 1->Set Font (FONT1_BOLD) ;

Center(int $left, int $right, Boolean Mixed $y=false)

Parameters:

Pleft Left x-coordinate

$right L eft x-coordinate

Sy If specified, the Y -coordinate
Description:

Center the text between the two X -coordinates using possible a previous specified Y - coordinate.

Returns:
NA

See also:

Pos()

Example:

SetColor(Color $color)

Parameters:
$color Color of text

Description:
Specify text color to be used.

Returns:
NA

See also:

Example:
$t 1->Set Col or (“navy”);

SetOrientation(String $d="horizontal")
Parameters:
$d Specify if the text should be drawn vertical or horizontal.

Description:
Set the orientation of the text, either vertical or horizontal.

Returns:
NA

See also:

Pos()
Example:

GetWidth(Class Image &$img)

Parameters:
$img Theimage we are drawing to

Description:
Returns the width, in pixels, of the text

Returns:
NA

See also:
Example:

GetFontHeight(Class Image &$img)

Parameters:
$img Theimage we are drawing to

Description:
Returns the height, in pixels, of the text

Returns:
NA

See also:

Example:

Stroke(Class Image &$img)

Parameters:
$img Theimage we are drawing to

Description:
Stroke the text to the specified image.

Returns:
NA

See also:

Example:

6.3.5 Class Grid
Defined in file: jpgraph.php

Public properties

Public methods

Set Li neStyl e()

Show()

Set Vi ght ()

Set Col or ()

Set Vi ght ()

Private properties & methods
Qid()

St roke()

General description
This class handles the drawing of the grid lines based on the cal culations done by the Tick class which
is responsible for determine the exact positions of each vertical or horizontal tick mark.

Y ou normally manipulates the grid as an instance in the graph class, either as $graph->xgrid or as
$graph->ygrid
Grid(Class Axis &$axis)

Parameters:
$axis Axisto which the grid lines belong

Description:

Handles the gridlines for the specified axis. Gridlines can be drawn on either just major ticks or on both
major and minor ticks. The default isto draw grid liens on major ticks only.

Returns:
NA

See also:
Example:

SetWeight(int $weight)

Parameters:
Pweight in pixels

Description:
Specify weight in pixelsfor the gridlines.

Returns:
NA

See also:

Example:

SetColor(Color $color)

Parameters:

$color

Description:

Specify color for gridlines. Default is a very light grey color.

Returns:
NA

See also:
Example:

SetLineStyle(String $type)

Parameters:
$type Type of gridlines, see below

Description:
Specify line style for gridlines. Allowed styles are

? “solid”

?? “dotted”

?? “dashed”

?? “longdashed”
Deafult is“solid”.

Returns:
NA

See also:

Example:

Show(Boolean $major=true, Boolean $minor=false)

Parameters:

$major Show/Hide Major gridline
$minor Show/Hide Minor gridline
Description:

Determine what gridlines are visible. Default isto show only major gridlines.

Returns:
NA

See also:

Example:
$graph- >ygrid(true,true); // Show both maj and m nor gridmarks

Stroke()

Parameters:
NA

Description:
Draw the gridlines as previously specified. The gridlines will only be drawn within the plot area of the
image. Thisis an internal method and should never be called from user level code.

Returns:
NA

See also:

Example:

6.3.6 Class LinearTicks
Defined in file: jpgraph.php

Extends Ticks.
Ticks <1._I LinearTicks
Public properties " Public properties
Cl ass Li nearScal e scal e;
Class Text title;
Public methods Public methods
Set Col or () SupressZerol_abel ()
Set Véi ght () SupressMinorTickMarks()
SetDirection() SupressFirst()
et SetPrecision()
Get Mpj or ()
Get M nor ()
Set ()
Private properties & methods Private properties & methods
I sSpeci fied() Li near Ti cks()
C ass | mage iny; Stroke()
Ti cks() Set XLabel O f set ()
Get M nTi ckAbsSi ze() Set Text Label Start ()
Get Maj Ti ckAbsSi ze()

General description
The concrete class which implements linear ticksfor X and Y axis. This class should be used through
it' sinstance as a property of the scale.

Instantiated
$grasph->xaxis->scale->ticks

LinearTicks()
Parameters:
NA

Description:
Create a new instance. Note thisis a private method which should not be called by users of this library
directly.

Returns:
NA

See also:
LogTicks()

Example:

GetMajor()

Parameters:
NA

Description:
Get major step size in world coordinates

Returns:
NA

See also:
GetMinor()

Example:

GetMinor()

Parameters:
NA

Description:
Get minor step size in worl d coordinates

Returns:
NA

See also:

Example:

Set(real $maj_step, real $min_step)

Parameters:

$maj_step Specify major step size in world coordinates
$min_step Specify minor step size in world coordinates
Description:

Set the step size to beused for minor and major ticks. Note you should normally let the autoscaling
handle this since that is for most practical purposes good enough.

Returns:
NA

See also:

Example:

Stroke(Class Image &$img, Class LinearScale &$scale, int $pos)

Parameters:

$img Theimagetobedrawnto

$scale The scale associated with these ticks

$pos Determine which side of the axis the ticks should go on,allowed values are
-1 Left/Up
1 Right/Down

Description:
Stroke the tick marks to the image. This method is private to the library and should never be called
directly.

Returns:
NA

See also:

Example:

6.3.7 Class LinearScale

Defined in file: jpgraph.php
Public properties
Class Ticks ticks

Public methods
Get M nVal ()

Get MaxVal ()
Updat e()

Transl at e($a)
Set Col or ()

Set Vi ght ()

Set Grace()
Private properties & methods
Li near Scal e()
Init()

| sSpeci fied()
Set M n()

Aut oScal e()

Cal cTi cks()

Mat chM n3()

I ni t Const ant s()
St roke()

General description

The general scale class which represent the scale on either a X or Y axis. If the scale is not explicitly
set if will be automatically determined based on the min and max values of al the plots using this
scale. Both X and Y axis may have alinear scale. A special version of the linear scale is the “text”
scale which is a scale only containing whole numbers. Used to represent counting scales. A text scale
may only be used for a X -axis.

LinearScale(real $min=0, real $max=0, String $type="y")

Parameters:

$min Minimum world value to be represented
$max Maximum world value to be represented
$type Determinesif thisisaX or Y axis

Description:
Create a new instance of alinear scale. Thisis a private method to the library and should as such never
be called directly.

Returns:
NA

See also:
LogScal &)

Example:

Init(Class Image &$img)

Parameters:
$img Theimage where the scale should be used

Description:

Second phase initialisation. Used to add the scale as an observer to the Image class since we need to get
notified if the image changes it's parameters, for example if the margin are changed we must
recalculate our scaling constants.

Note this can’t be done in the constructor due to a bug in PHP4 that will not allow you to use a
reference to “this’ pointer in the constructor. Strictly speaking it will of course allow you to use it but it
won't work!

Int ernal method that should never be called by users of this library directly.

Returns:
NA

See also:
Image::AddNotifyer()

Example:

IsSpecified()
Parameters:
NA

Description:
Determineif the scale has been manually specified or not. Used to determine if t he scale should be
auto-scaled or not.

Returns:
TRUE/FALSE

See also:
Example:

SetAutoMin(real $min)

Parameters:
$min Minvaluein world coordinates for auto-scaling

Description:

By default the auto-scaling will use the lowest value of the plots as the minimum value of the Y -scale.
If the chosen value falls “close to” 0. Then zero will be chosen. However, it is sometimes useful to hard
set the minimum value used by the auto-scaling and then just have the auto-scaling determine the
maximum (normally) Y -value.

This method alows you to do just that.

Returns:
NA

See also:
Example:

GetMinVal()

Parameters:
NA

Description:
Get the minimum world coordinate.

Returns:
NA

See also:
Example:

GetMaxVal()

Parameters:
NA

Description:
Get the maximum world coordinate.

Returns:
NA

See also:
Example:

Update(Class Image &$img, Real $min, Real $max)

Parameters:

$img Image where the scaleis used
$min Minimum world coordinate
$max Maximum world coordinate

Description:

This method is really design as a the observer notification method. This will update internal constants
that is used to perform the scaling between world and screen. Thiswill get automatically called if, for
example, the margins of the image are changed.

Note that this method should normally never be called directly by a user using this library.

Returns:
NA

See also:
Example:

Int Translate(Real $a)

Parameters:
$a World coordinate

Description:
Translates a given world coordinate to the corresponding screen pixel position within the image.

Returns:
Screen coordinate in pixels

See also:
NA

Example:

SetGrace($grace)

Parameters:

$a Grace factor

Description:

Adds $grace percent to the max and min values used for autoscaling ti make scale larger then the actual
min and max values found in the data. The grace to add is calculated as the percentage of total dynamic
range., i.e. (max-min) which is then added to the max value and subtracted from the mijn value to make
the scale larger. A value of 10 normally gives satisfactory result. High values will make the graph look
very compressed.

Returns:
NA

See also:
NA

Example:
$gr aph- >yscal e->Set Grace(10); // Set 10% grace value to Y-scale

AutoScale(Class Image &$img, Real $min, Real $max, int $maxsteps, Boolean
$majend=true)

Parameters:

$i ng I mage which is drawn to

$min M ni rum wor | d coordi nate

$max Maxi mum wor | d coor di nat e

$maxst eps Maxi mum nunmber of mejor steps all owed
$naj end Shoul d the scale end at a major tick?
Description:

Performs autoscaling of the scale given the min/max and the number of maximum major ticks allowed.
Note that the autoscaling algorithm will most likely adjust the minimum and maximum values to better
fit within the scale chosen.

The maxsteps should in general be a function of the image size since a larger image can accommodate
more ticks.

The autoscaling is quite smart in that it actually performs a small search among some standard scale
step (multiple of 2, 5, 1 etc) to see which one fits best with the number of maximum steps. The
autoscaling has a slight preference to geps of 5 (0.5, 0.05 etc) so if there is a close match the steps of
5'swill be chosen.

The end of the scale can finish either on a minor or major tick mark. If you want the scaleto end on a
major ticks mark, and hence have a potential label, the parameer $maj end should be true.

Returns:
NA

See also:
CalcTicks()

Example:

InitConstants(Class &$img)

Parameters:
Img Image to draw top

Description:
Internal method. Initiates constants. Shuld never be called directly.

Returns:

NA
See also:

Example:

CalcTicks(int $maxsteps, Real $min, Real $max, int $a, int $b, Boolean $majend=true)

Parameters:

$maxsteps maximum number of major steps allowed on the scale
$min Min world coordinate

$max Max world coordinate

$a Algorithm Parameter a

$b Algorithm Parameter b

$majend Should the scale end on a mgjor tick?

Description:

Theinternal work routine which tries to fit a number of ticks given the parameters aand b. The
parameters will control what type of ticks we will be trying, steps of 2, 5 etc.

Thisis completely an internal routine and should never be called. Only documented for completeness.

Returns:
NA

See also:
AutoScale()

Example:

MatchMin3(int $a, int $b, int $c, Real $weight)

Parameters:

$a Value a
$b Vaueb
$c Vauec

$weight Weight for value ¢

Description:

Performs a weighted 3 way minimum, i.e. find the minimum of the three values a,b,c. The weight is
used to give the $c value a certain preference.

Thisis completely an internal routine and should never be called. Only documented for comp leteness.

Returns:
The minimum value

See also:
CalcTicks()

Example:

6.3.8 Class LogTicks

Defined in file: jpgraph.php
Extends Ticks.

Ticks <1._I LogTicks
Public properties Public properties

Cl ass LinearScal e scal e;
Class Text title;

Public methods Public methods

Set Col or ()

Set Vi ght ()

SetDirection()

Set()

Private properties & methods Private properties & methods
ifi I sSpeci fied()

Cl ass | mage iny; LogTi cks()

Ti cks() Stroke()

Get M nTi ckAbsSi ze()
Get Maj Ti ckAbsSi ze()

General description
Calculates the tick marks for alogarithmic scale. This differsfrom the LinearTicks in that ticks can’'t
be set manually. They are always calculated to be on even logs.

LogTicks()

Parameters:
NA

Description:
Creates a new logarithmic tick

Returns:
NA

See also:
LinearScale

Example:

IsSpecified()

Parameters:
NA

Description:
Determines if the ticks has been manually specified or not.

Returns:
NA

See also:

Example:

Stroke(Class Image &$img,Class LogScale &$scale, int $pos)

Parameters:
$img Image class to use
$scale logarithmic sacel to which the ticks belong

$pos

Description:

Returns:
NA

See also:

Example:

Which side of the axistheticksgo, -1, 1

6.3.9 Class LogScale

Defined in file: jpgraph.php
Extends LinearScale.

LinearScale

Public properties

LogScale

Public properties

Class Ticks ticks

Public methods

Cet-Maval--
Updat e()

Set Col or ()
Set Wi ght ()

Public methods

Private properties & methods

Transl at e($a)
Get M nval ()
Get MaxVal ()

Li near Scal e()
Init()

| sSpeci fied()
Set M n()

AutoScale()

Cal cTi cks()

Mat chM n3()

I ni t Const ant s()
St roke()

Private properties & methods

General description

Represents a logarithmic scale. Note that plots which has an Y-value of 0 and isadded to an Y axis

LogScal e()
Aut oScal e()

with a logarithmic scale will be automatically adjusted to 1.

LogScale(int $min, int $max, String $type="y")

Parameters:

$min Minimum value in whole number logs
$max Maximum value in whole number logs
$type XorY axis

Description:

Creates a new logarithmicscale between the given limits. Note that the limits should be given in logs!

Returns:
NA

See also:

Example:

$l = new LogScal e(0,2); // create a new Y scal e between 1 and 100

int Translate(Real $a)
Parameters:

$a World coordinate to be translated

Description:

Translate a world coordinate to screen coordinate.

Returns:
Sceren coordinate

See also:

Example:

$pi x = $scal e >Transl at e(110, 7);

Real GetMinVal()

Parameters:
NA

Description:
Get lowest value on scale

Returns:
Lowest value

See also:
LogScale::GetMaxVal()

Example:

Real GetMaxVal()

Parameters:
NA

Description:
Get highest value on scale

Returns:
Highest value

See also:
LogScae:GetMinVal()

Example:

AutoScale(Class Image &$img, Real $min, Real $max, int $maxsteps)

Parameters:

$img Drawing image

$min Minvalue of plots

$max Max valuein plots

$maxsteps Maximum number of major steps
Description:

Determines the best fit log scale to accommodate both $min and $max values.
Notes thisis an internal routine and should never be called directly by a user of thislibrary.

Returns:
NA

See also:

Example:

6.3.10 Class Legend

Defined in file: jpgraph.php
Public properties

Public methods
Set Col or ()

H de()

Set Shadow()

Set Layout ()

Set Font ()

Pos()

Set Backgr ound()
Add()

Private properties & methods
Stroke()

General description
Defines the appearance of the legend box in the plot. The legend box contains al the legends specified
for each plot in the graph. The legend box can have both horizontal and vertical layout.

Instantiated
$graph->legend

Legend()

Parameters:
NA

Description:
Create the legend. Note internal class should never be instantiated by a user class.

Returns:
NA

See also:

Example:

SetShadow(Boolean $f=true, int $width=2)

Parameters:

$f Shadow on/off
$width Shadow width
Description:

Specify if the legend box should have a drop shadow or not. Default is on.

Returns:
NA

See also:

Example:

SetLayout(int $I=LEGEND_VERT)

Parameters:
$l Determine horizontal or vertical layout

Description:
Determine if the text legend should be lay out as stacked on top of each other (default) or horizontally
beside each other. Lega values for $l are

?? LEGEND_VERT
?? LEGEND_HOR

Returns:
NA

See also:

Example:

SetFont(int $size, string $font="internal")

Parameters:

$si ze Font size
$f ont Font family
Description:

Specify font for legends. See section 5.2 for legal values of $size

Returns:
NA

See also:

Example:

Pos(Real $x, Real $y, String $halign="right", String $valign="top")

Parameters:

$x X-coordinate in percent of image width
$y X-coordinat e in percent of image height
$haling How to interpret the X -coord

$valign How to interpret the Y-coord
Description:

Specify the position of the legend box.

Returns:
NA

See also:
Example:

SetBackground(Color $color)

Parameters:
$color Color

Description:
Specify background color for the legend box.

Returns:
NA

See also:

Example:

Add(String $txt, Color $color)

Parameters:

$xt Legend text to be added
$color Color of marker
Description:

Add atext legend to the legend box.

Note thisis a private method that never should be called by a user libray directly. If you want a plot to
have alegend use the Setl egend() method for that plot.

Returns:
NA

See also:

Example:

Stroke(Class Image &$img, Class LinearScale &$xscale, Class LinearScale &$yscale)

Parameters:

$img Image to be drawn to
$xscale X-scale used for graph
$yscale Y-scale used for graph
Description:

Stroke the legend to the graph.
Note internal routine and should never be directly called by a user of this library.

Returns:
NA

See also:

Example:

6.3.11 Class LinePlot
Defined in file: jpgraph_line.php

Extends Plot.

Plot <1._I LinePlot

Public properties " Public properties
Public methods Public methods
Set Col or () Li nePl ot ()

Set Li neWei ght () Set Fil | ed()

M n() SetFill @l or()
Max () Set Center ()

Set Legend()

Private properties & methods Private properties & methods
Plot() Legend()
Legend- St roke()
Stroke)

PreSt r okeAdj ust ()

St r okeMar gi n()

General description
The concrete class which implements a standard line plot.

LinePlot(Array Real &$datay, Mix $datax=false)

Parameters:

$datay Y-vaues

$datax Possible X-vaues
Description:

Create aline plot.

Returns:
NA

See also:
Example:

SetFilled(Boolean $f=true)

Parameters:
$f TRUE/FALSE

Description:
Determineif the line plot should be filled. Thefill color is specified through the SetFillColor() method.

Returns:
NA

See also:
SetFillColor()

Example:

SetColor(Color $color)

Parameters:
$color Color

Description:
Specify line color.

Returns:
NA

See also:
SetFillColor()

Example:

SetFillColor(Color $color, Boolean $f=true)

Parameters:
$color Fill color
$f Should the line plot befilled ort not

Description:

Returns:
NA

See also:
Example:

Legend(Class Graph &$graph)

Parameters:
$graph Class Graph

Description:
Framework method. Gets called by framework to set the legend. Note if the plot isfilled then the fill
color will be used as the legend color, otherwise the line color will be used.

Internal method. Should never be called by a user of thislibrary.

Returns:
NA

See also:

Example:

SetCenter($f=true)

Parameters:
$f Specify if xscale ticks used with a “text” scale should be centered.

Description:

When using atext scale by default the first tick mark will coincide with the Y-axis and hence the first
data point will haveit’s x-coordinate the same asthe Y -axis. Thisis not always aesthetic pleasing. To
change this call SetCenter() this will make each tick-mark be placed in the center of it's “tick-slot” and
will have the effect of adding a vertical margin on the left and right of the plot -area.

See section “Advanced use of JpGraph —Using grace value” for an example.

Returns:
NA

See also:
NA

Example:
$lineplot->SetCenter()

Stroke(Class Image &$img, Class LinearScale &$xscale, Class LinearScale &$yscale)

Parameters:

$img Image to draw to
$xscale X-Scale to use
$yscale Y-Scaleto use
Description:

Stroke the line plot.
Internal method. Should never be called by a user of thislibrary.

Returns:
NA

See also:

Example:

6.3.12 Class AccLinePlot
Defined in file: jpgraph_line.php

Extends Plot.

Plot <1._I AccLinePlot
Public properties " Public properties
Public methods Public methods
Set Col or () AccLi nePl ot ()
Set Li neWi ght () Max ()

MnO) M n()

Max()

Set Legend()

Private properties & methods Private properties & methods
Plot() Legend()
Legend- St roke()
Stroke)

PreSt r okeAdj ust ()

St r okeMar gi n()

General description

The concrete class that implements an accumulated line plot. An accumulated line plot will “ staple”
each line plot on top of each other using each individual Y point as the distance to the previousline
plot, hence the accumulation.

AccLinePlot(Array Class LinePlot $plots)

Parameters:
$plot Array of line plots

Description:
Creates a new accumulated line plot from two or more existing line plots

Returns:
NA

See also:

Example:

$l 1=new Li nePl ot ($dat aly);

$l 2=new Li nePl ot ($dat a2y);

$l 3=new Li nePl ot ($dat a3y) ;

$al =new AccLinePlot(array($l1, $12, $I13));

6.3.13 Class PlotMark
Defined in file: jpgraph_line.php

Public properties

Public methods
Pl ot Mar k()

Set Type()

Set Col or ()
Set W dt h()

Private properties & methods
St roke()

General description

This class encapsul ates the functionality to draw and position Plot marksin aline or scatter graph. This
isan interna class and should normally never be used. Y ou should only access this class through the
“mark” instance variable in the line and scatter plot.

Instantiated
$lineplot ->mark

PlotMark()

Parameters:
NA

Description:
Create a new mark class.

Returns:
NA

See also:

Example:

SetType(int $t)

Parameters:
$t Specify mark type

Description:
Allowed types are:

?? MARK_SQUARE, A filled square

?? MARK_UTRIANGLE, A upward pointing triangle
?? MARK_DTRIANGLE, A downward pointing triangle
?? MARK_DIAMOND, A diamond shape

?? MARK_CIRCLE, A non-filled circle.

?? MARK_FILLEDCIRCLE, A filled circle

Returns:
NA

See also:

Example:
$l i nepl ot - >mar k- >Set Type(MARK_DI AMOND) ;

SetColor(Color $color)

Parameters:
$color Color

Description:
Specify line color of marks

Returns:
NA

See also:
SetFillColor()

Example:

SetFillColor(Color $color)

Parameters:
$color Color

Description:
Specify fill color for marks

Returns:
NA

See also:
SetColor()

Example:

SetWidth(int $width)

Parameters:
$width Width, in pixels, of mark

Description:
Specify the width, in pixels, of the markl

Returns:
NA

See also:
SetColor()

Example:

Stroke(Class Image &$img, int $x, int $y)

Parameters:

$ing Inmage to draw to

$x X-coordinate in pixels
$y Y-coordinate in pixels
Description:

Draw the mark to the specified image using the given screen coordinates (not world coordinates).

Returns:

NA
See also:

Example:

6.3.14 Class BarPlot
Defined in file: jpgraph_bar.php

Extends Plot.

Plot <1._I BarPlot

Public properties " Public properties
Public methods Public methods
Set Col or () Bar Pl ot ()

Set Li neWi ght () SetYStart ()

MnO) M n()

Max () Set W dt h()

Set Legend() Set Fi | | Col or ()
Private properties & methods Private properties & methods
Plot() Legend()
Legend- St roke()
Stroke()- PreSt r okeAdj ust ()
St r okeMar gi n()

General description
Concrete class which implements the standard vertical bar plot functionality.

BarPlot(Array Real &$datay)

Parameters:
$datay Datapoints

Description:
Create a new bar plot from the datapoint given in $datay

Returns:
NA

See also:
Example:

SetYStart(Real $y)

Parameters:
$y Start value inworld coordinates

Description:
Setsthe Y value to become the base of the bars. Normally thisis set to 0. For logarithmic plotsthisis
automatically adjusted to the lowest point on the scale.

Returns:
NA

See also:

Example:

SetWidth(Real $width)

Parameters:
$width In percent of major ticks (0.0-1.0)

Description:

Specify the width of each bar as percentage of with of the major ticks. This meansthat if you specify a
width of 1.0 there will be no gaps between the bars

Returns:
NA

See also:

Example:

SetFillColor(Color $color)

Parameters:
$color Color

Description:
Set fill colors for bars.

Returns:
NA

See also:

Example:

Stroke(Class Image &$img, Class LinearScale &$xscale, Class LinearScale &$yscale)

Parameters:

$i ng Image to draw to
$xscal e X-scal e to be used
$yscal e Y-scal e to be used
Description:

Draw the bar plot to the specified image.

Returns:
NA

See also:

Example:

6.3.15 Class GroupBarPlot
Defined in file: jpgraph_bar.php

Extends BarPlot.

BarPlot <1._I GroupBarPlot
Public properties " Public properties
Public methods Public methods
Bar Pl ot () G oupBar Pl ot ()
Set YStart () Mn()

[VE-TA% Max()

Set W dt h()

Set Fi |l | Col or ()

Private properties & methods Private properties & methods

Legend()

St+okey- St roke()

Pr eSt r okeAdj ust ()

General description

Concrete class which is responsible for constricting a grouped bar plot out of two or more normal Bar
Plot. Each bar in a group shares the same X -tick and the group bar is centred around that X -tick. Each
bar within the group is given equal width

GroupBarPlot(Array Class BarPlot $plots)

Parameters:
$plot Array of bar plots

Description:
Create a group bar plot from the given individual bar plots. Note that there should normally be the
same number of data points for each bar plot.

Returns:
NA

See also:

Example:

Stroke(Class Image &$img, Class LinearScale &$xscale, Class LinearScale &$yscale)

Parameters:

$i g Image to draw to
$xscal e X-scal e to be used
$yscal e Y-scal e to be used
Description:

Draw the group bar plot to the specified image.

Returns:
NA

See also:

Example:

6.3.16 Class AccBarPlot
Defined in file: jpgraph_bar.php

Extends BarPlot.

BarPlot <1._I AccBarPlot
Public properties " Public properties
Public methods Public methods
Bar Pl ot () AccBar Pl ot ()

Set YStart () Mn()

[VE-TA% Max()

Set W dt h()

Set Fi |l | Col or ()

Private properties & methods Private properties & methods

Legend()

St+okey- St roke()

Pr eSt r okeAdj ust ()

General description

Implements accumulated bar plots, also known as stacked bar plots. Takes two or more normal bar
plots and stacks them on top of each other for same X -values. Note the individual bars Y-values are
treated as deltas, so for example if two bar plots are added and the first value of each bar is 2 and 3 the
resulting stacked bar will have a value of (2+3)=5.

AccBarPlot(Array $plots)

Parameters:
$plot Array of bar plots

Description:

Create an accumulated bar graph plot from two or more other bar plots
Returns:

NA

See also:

Example:

Stroke(Class Image &$img, Class LinearScale &$xscale, Class LinearScale & $yscale)

Parameters:

$i ng Image to draw to
$xscal e X-scal e to be used
$yscal e Y-scal e to be used
Description:

Draw the accumulated bar plot to the specified image.

Returns:
NA

See also:

Example:

6.3.17 Class ErrorPlot
Defined in file: jpgraph_error.php

Extends Plot.

Plot <1._I ErrorPlot

Public properties " Public properties
Public methods Public methods
Set Col or () ErrorPlot ()

Set Li neWi ght () Set Center ()

[VE-TA%

Max ()

Set Legend()

Private properties & methods Private properties & methods
Pl ot () Legend()
Legend- St roke()
Stroke()- PreSt r okeAdj ust ()
St r okeMar gi n()

General description
Concrete class which implements error plots. Error plots takes two y-values for each X-value, min and
max. It then marks each pair of min/max values with a vertical bar.

ErrorPlot(array &$datay, array $datax=false)

Parameters:
$datay Data points,contains 2-Y values for each X point.
$datax If specified, used as X -coordinates

Description:
Create a new error plot.

Returns:
NA

See also:
Example:

SetCenter(Boolean $c=true)

Parameters:
$c Set center on/off

Description:
Specify if the data points should be place at the left end between each mgjor tick or at the center of the
major ticks.

Returns:
NA

See also:
Example:

Stroke(Class Image &$img, Class LinearScale &$xscale, Class LinearScale &$yscale)

Parameters:
$i ng Image to draw to
$xscal e X-scal e to be used

$yscal e Y-scal e to be used

Description:
Draw the error plot.

Returns:
NA

See also:

Example:

6.3.18 Class Plot

Defined in file: jpgraph.php
Public properties

Public methods
Set Col or ()

Set Li neWi ght ()

M n()

Max()

Set Legend()
Private properties & methods
Pl ot ()

Legend()

St roke()

PreSt r okeAdj ust ()
St r okeMar gi n()

General description
The abstract base class for al plots. All plots inherits from this class. Defines the basic characteristics
of aplot.

Plot(Array real &$datay, Mix $datax=false)

Parameters:

$datay Y vaues o be plotted

$datax If specified used as X -coordinates.
Description:

Creates a new plot using the given data vectors. If no X -vector is given the datapoints will be
numbered sequentially starting with 0.

Returns:
NA

See also:

Example:

Stroke(Class Image &$img, Class LinearScale &$xscale, Class LinearScale &$yscale)

Parameters:

$img Image to use

$xscale X-scaleto usefor the plot
$yscale Y-scaleto usefor the plot
Description:

Stroke the plot.

Note internal routine and should never be directly called by a user of thislibrary.

Returns:
NA

See also:

Example:

Legend(Class Graph &$graph)

Parameters:
$graph An instance of GRaph

Description:

Framework method. Gets called to let each individual plot decide what text should be added to the
legend. The standard implementation just adds the legend property to the Legend() if the legend is non-
empty. Thiswill have a dlight different implementation for plot types that manages several plots or
several legends. In that case this routine should add each individual legend that should be shown to the

$graph->legend.
Note internal routine and should never be directly called by a user of thislibrary.

Returns:
NA

See also:
Example:

PreStrokeAdjust(Class Image &$graph)

Parameters:
$graph Instance of Graph()

Description:

Framework method. Gets called prior to tha stroking of the graph. May be used to make any
adjustment to the sa@les (or ticks) that is needed. For example, in the BarPlot(), thisis used to adjust the
X-scale so that the bars gets ceneterd in the graph and not normally put close to the left Y-axis.

Note internal routine and should never be directly called by a usa of thislibrary.

Returns:
NA

See also:
Example:

SetWeight(int $weight)

Parameters:

$weight Specify weight of graph

Description:

Set the weight for the graph. The actual meaning of this method is determined by the concrete Plot
class.

Returns:
NA

See also:
Example:
Min()

Parameters:
NA

Description:

Determine the minimum X and Y value of all points.

Returns:
NA

See also:
Max()

Example:

Max ()

Parameters:
NA

Description:
Determine the maximum X and Y value of all points.

Returns:
NA

See also:
Min()

Example:

SetColor(Color $color)

Parameters:
$color Color

Description:
Specify color of the plot. This color will also be used in the legend box.

Returns:
NA

See also:
Example:

SetLegend(String $txt)

Parameters:
Pixt Legend text

Description:
Specify legend text for the plot. Any specified text is then automatically added to the legend box.

Returns:
NA

See also:
Example:

SetLineWeight(int $weight=1)

Parameters:
$weight Line weight of the plot

Description:
Specify line weight of the graph The actual meaning of this method is determined by the concrete Plot
class.

Returns:
NA

See also:

Example:

StrokeMargin(Class Image &$img)

Parameters:
$img Image to be used

Description:
Framework method. Gets called after the margin in the graph has been set to its color. Should be used
to draw anything in margin. The default implementation does nothing.

Returns:
NA

See also:

Example:

6.3.19 Class ErrorLinePlot

Defined in file: jpgraph_error.php
Extends ErrorPlot.

ErrorPlot <1._I ErrorPlot

Public properties " Public properties

Public methods Public methods

ErrorPl ot () ErrorLi nePl ot ()

Set Cent er ()

Private properties & methods Private properties & methods
Legend() Legend()

St+oke- St roke()

Pr eSt r okeAdj ust () Pr eSt r okeAdj ust ()

General description

The error line plot is much the same as the error plot with the addition of a line between the average
value of each error plot pair. The properties of the line may be accessed through the ‘line’ property of
the ErrLinePlot, so for example to draw ared line you issue the statement

$errlineplot ->line->SetColor(“red”);

ErrorLinePlot(array &$datay, array $datax=false)

Parameters:
$datay Data points,contains 2-Y values for each X point.
$datax If specified, used as X -coordinates

Description:
Create a new error line plot.

Returns:
NA

See also:

Example:

Stroke(Class Image &$img, Class LinearScale &$xscale, Class LinearScale &$yscale)

Parameters:

$i ng Image to draw to
$xscal e X-scal e to be used
$yscal e Y-scal e to be used
Description:

Draw the error line plot.

Returns:
NA

See also:

Example:

6.3.20 Class SpiderGraph
Defined in file: jpgraph_spider.php

Extends Graph

Graph <1._I SpiderGraph

Public properties " Public properties

Qass Axis _ Cl ass Spi der Axi s axis;
xaxi s, yaxis, y2axis; Class SpiderGrid grid;
Gass Gid

xgrid,ygrid,y2grid;

Cl ass | mage iny;

dass Text title;

Public methods Public methods

Gaphi- Spi der Gr aph()

Add SupressT ckMar ks()
Addy2() Set Pl ot Si ze()

AddText () Set Center ()

Box{) Set Col or ()

Set-Color- SetTitles()
Set-Margi-rCol-or Set Ti ckDensi ty()

Set Franme() Add()

Set Shadow() Stroke()

Set Scale()

SetY2Scale()

: 7

Streke-

Private properties & methods Private properties & methods
Cl ass LinearScal e yscal e;

y2scal e;

St rokeFr anme()

General description

Represent a spider graph. This differs from Graph in that it only contains one scale and one axis which
isrotated in a number of copies around the center (set by SetCenter()). The number of axisis equal to
the number of datapoints in theplot and hence the angle between each axis is 2*pi/ (nbr of datapoints).
The firsr axis is orientated vertically at 90 degrees. Internally the $yscale instance variable is used for
the scale of the axis.

SpiderGraph($width=300,$height=200,$cachedName="")

Parameters:
Width The width of the image used for the graph
Height The height of the image used for the graph

CachedName The name of the cached graphic file

Description:

Creates a new image readu for spider plots. If cachedname is given the normal JpGregph cache
mechanism will kick in and save the generated image by that name. The next time theimage is
generated it will first try to locate a cached version of the same name if found it will read it directly
from the cache, if not it will be generated.

Returns:
NA

See also:
Graph() Create aregular linear graph.

Example:
$graph = new Spi der G aph(300, 200) ;

SupressTickMarks($f=true)

Parameters:
$f TRUE/FALSE Specify wether ot not tick marks should be shown.

Description:
Determine if tick marks should be displayed on each axisin the spider graph. The default isto turn the
ticks off.

Returns:
NA

See also:
NA

Example:
$gr aph- >Supr essTi ckMar ks() ;

SetPlotSize($size)

Parameters:
$size Set dimater of the spider plot in percentage.

Description:
Specifiest he diameter of the spider plot in terms of min($wifth,Sheight) of the graph.

Returns:
NA

See also:
SetCenter()

Example:
$gr aph- >Set Pl ot Si ze(0.7); // 70% of the mi ni mum of wi dth/hei ght

SetCenter($px,$py=0.5)

Parameters:
$px Position in pixels of the center X-coordinate
$py Position in pixels of the center Y-coordinate

Description:
Specified the center of the spider plot graph in pixels, The default is to place the graph in the center of
the image.

Returns:
NA

See also:
SetPlotSize()
Example:

SetColor($color)

Parameters:
$color Color for background in the graph

Description:
Specify the background color of the graph. The default is white.

Returns:

NA

See also:
NA

Example:
$gr aph- >Set Col or (“silver”);

SetTitles(array $title)

Parameters:
$title Array of titles for each axis.

Description:
Used to specify the title for each of the axisin the spider graph. The number of titles should match the
number of data pointsin the plot (=number of axisin the graph).

Returns:
NA

See also:
NA

Example:
$graph- >Set Titl es(array(“Jan”,” Feb”,”Mar”, " Apr”, " May”, June”);

SetTickDensity($densy=TICKD_NORMAL)

Parameters:
$densy Tick density

Description:
Specify the tick density (i.e. how close should the tick marks / labels be on the axis). In spider graph
only thevertical axis at 90 degrees have titles. The default setting is (of course) TICKD_NORMAL

Allowed setting are

?? TICKD_DENSE

?? TICKS_NORMAL

?? TICKD_SPARSE

?? TICKD_VERYSPARSE
Returns:

NA

See also:
NA

Example:
$gr aph- >Set Ti ckDensi t y(TI CKD_SPARSE) ;

Add(&$splot)

Param eters:
$plot A new spider plot

Description:
Add apreviously created spier plot to the spider graph. Note that each spider plot is stroked in the order
itisadded, i.e. the last plot added will go over previously added plotsin terms of image depth.

Returns:
NA

See also:
Class SpiderPlot

Example:
$pl ot = Spi der Pl ot ($dat a) ;
$gr aph- >Add($pl ot) ;

GetPlotsYMinMax()

Parameters:
NA

Description:
Return the minimum and maximum value for al the plots in the graph.

Returns:
array($min,$max);

See also:
NA

Example:
NA

Stroke()

Parameters:
NA

Description:

Stroke the defined graph to an image. This call should be the last call in the script since this call will
output the graph to the browser (and a cach file if afile name was specified when the graph was
created).

Returns:
NA

See also:
SpiderGraph()

Example:
Trivial.

6.3.21 Class SpiderAxis

Defined in file: jpgraph_spider.php
Extends Axis

AXxis <1._I SpiderAxis

Public properties " Public properties

Cl ass LinearScal e scal e; Class FontProp title
Public methods Public methods

H de() _ Set Ti ckLabel s();

Set Col or ()

Set Wi ght ()

SetFH-tH-e(

Set Ticklabels{)

Set FextFieks()

SetLabel Pos()

Set Font ()

Private properties & methods Private properties & methods
Axis) Spi der Axi s ()

Stroeke(- Stroke()

General description

Handles the axis in the spider graph. Note thaht even though this class inherits most of the methods
from the general Axis class some methods are not supported since it is not suitable for this kind of axis.
The striked through methods which doesn’t exist in class SpiderAxis are not supported.

SpiderAxis(&$img, &$scale, $color=array(0,0,0))

Parameters:

$img Image to be drawn to
$scale Scale to use

$color Color of axis and labels
Description:

Create a new spider axis. Thisis an internal (private) routine.

Returns:
NA

See also:
NA

Example:
NA

SetTickLabels($labels)
Parameters:
$labels Array of tick labels

Description:
Set the tick label array, i.e. the name of the tick labels. By default the normal value will be displayed to
the right of the Y-axis.

Returns:
NA

See also:

NA

Example:
NA

Stroke($pos,$angle,&$grid, $title,$draw_label)

Parameters:

$pos Y-position inpixell of the axis start position

$angle Whiah angle dhould the axis be drawn at

$grid Output: Cont ains pair of pixel points for each of the grid points along the axis
$title Title of the axis

$draw_lable TRUE if the labels should be draw for this axis

Description:
Stroke the defined axis from the center at angle $angle to the image

Returns:
NA

See also:
NA

Example:
NA

6.3.22 Class SpiderPlot
Defined in file: jpgraph_spider.php

SpiderPlot
Public properties

Public methods

Spi der Pl ot ()

M n()

Max()

Set Legend($I egend)
Set Li neWei ght ()

Set Col or ()

Private properties & methods
Get Count ()

Legend()

St roke()

General description
Creates a new spider plot. Each spider plot can only be stroked to a SpiderGraph() throught the use of
SpiderGraph::Add() method.

SpiderPlot($data)

Parameters:
$data Array of datapoints

Description:

Create a new spider plot from an array of data points. From each data point an axis is created. Note that
for practical purposes the number of data points really should be less then 10-12 points. Otherwise the
idea behind spier plots sorts of lose its meaning.

Returns:
NA

See also:
NA

Example:
$plot = new SpiderPLot(array(12,36,42,55,19));

Min()
Parameters:
NA

Description:
Return the minimum value of all data points for this plot

Returns:
NA

See also:
Max()

Example:
$max = $plot ->M n();

Max ()

Parameters:
NA

Description:
Return the maximum value of all data points for this plot

Returns:
NA

See also:
Min()

Example:
$max = $pl ot ->Max()

SetLegend($legend)
Parameters:

$legend Legend string
Description:

Specify legend for this plot. Thisis atext string that will be automaticdly added to the legend box.

Returns:
NA

See also:
NA

Example:
$pl ot - >Set Legend(“ Def ect Goal ");

SetLineWeight($w)

Parameters:
$w Weight for plot linesin pixels.

Description:
Specify the weight (width) of the line in the spider plot.

Returns:
NA

See also:
NA

Example:
$plot->SetWeight(2); // Specify the weight to two pixels

SetColor($color,$fill_color=array(160,170,180))

Parameters:

$color LineColor
$fill_color Fill color
Description:

Specify the color of the spider plot.

Returns:

NA

See also:
NA

Example:
(Trivial.)

GetCount()

Parameters:
NA

Description:
Return number of datapointsin plot.

Returns:
Int NumberOfDataPoints

See also:
NA

Example:
(Trivial)

Legend(&$graph)

Parameters:
$graph An instance of the spider graph

Description:

This is a framework method that gest called in the SpiderGraph stroke() method. It is used to give each
plot a chance to add the appropriate legend string and color to the legend | the graph. This helps the
decoupling between the graph class and the plot class.

Returns:
NA

See also:
NA

Example:
NA

Stroke(&$img, $pos, &$scale, $startangle)

Parameters:

$img Image to stroke to

$pos Y-coordinate position for startpoint
$scale Scale to use

$startangle Startangle for first data point
Description:

Strokesthe previously defined spider plot to the griven image. Thisis an internal method that will be
called from SpiderGraph::Stroke()

Returns:
NA

See also:

NA

Example:
NA

6.3.23 Class SpiderGrid

Defined in file: jpgraph_spider.php
Extends Grid

Grid

SpiderGrid

Public properties

Public properties

Public methods

Public methods

Set Li neStyl e()

Show()
Set Wi ght ()

Set Col or ()
Set Wi ght ()

Private properties & methods

Private properties & methods

(FawTAn
Stroke()

SpiderGrid()

General description

Handles the drawing of grid linesin the spider graph. Inherits all standard properties from Grid()

SpiderGrid()

Parameters:
NA

Description:

Creates anew spider grid. Thisisinternal grid that never should be called directly.

Returns:
NA

See also:
Grid()

Example:
NA

6.3.24 Class ScatterPLot

Defined in file: jpgraph_scatter.php
Extends Plot

Plot

Public properties

SpiderGrid

Public properties

Public methods

Public methods

Private properties & methods

Private properties & methods

General description

ScatterPlot($datay,$datax)

Parameters:
$datay
$datax

Description:

Creates a new scatter plot from the coordinate arrays given.

Returns:
NA

See also:

Example:

6.3.25 Class PieGraph

Defined in file: jpgraph_pie.php
Extends Graph

Graph <1._I SpiderGraph
Public properties Public properties
Oass—Ax-s

Cass &id

Cl ass | mage iny;

d ass Text title;

Cl ass Legend | egend;
Public methods Public methods
Sapht)- Add()

Add{) Stroke()

Addy2()
AddText ()

Box-
Set—Gel—ef—H-

Set Frane()
Set Shadow()
SetScale()
Set-¥2Scal-e(

; 4
Stroke)-
Private properties & methods Private properties & methods
Cl ass LinearScal e yscal g;
Cl ass LinearScal e xscal e,
y2scale
Get Pl ot sYM nMax()

St rokeFr anme()

General description

Represent a spider graph. This differs from Graph in that it only contains one scale and one axis which
isrotated in a number of copies around the center (set by SetCenter()). The number of axisis egqual to
the number of datapoints in the plot and hence the angle between each axisis 2* pi/ (nbr of datapoints).
The firsr axis is orientated vertically at 90 degrees. Internally the $yscale instance variable is used for
the scale of the axis.

PieGraph($width=300,$height=200,$cachedName="")

Parameters:
Width The width of the image used for the graph
Height The height of the image used for the graph

CachedName The name of the cached graphic file

Description:

Creates a new image ready for pie plots plots. If cachedname is given the normal JpGraph cache
mechanism will kick in and save the generated image by that name. The next time the image is
generated it will first try to locate a cached version of the same name if found it will read it directly
from the cache, if not it will be generated.

Returns:
NA

See also:
Graph(), SpiderGraph()

Example:
$graph = new Pi eG aph(300, 200);

Stroke()

Parameters:
NA

Description:
Sends the created image back to the browser. Should be the latest call in your script since script
executionends with this call.

Returns:
NA

See also:
NA

Example:
$gr aph- >St r oke() ;

6.3.26 Class PiePlot
Defined in file: jpgraph_pie.php
Extends --

SpiderGrid

Public properties

Class Text title

Public methods
Pi ePl ot ()

Set Center ()

Set Sli ceCol ors()
Set Start Angl e()
Set Font ()

Set Si ze()

Set Font Col or ()
Set Legends()

H delLabel s()
Set Preci si on()

Private properties & methods
Legend()

St roke()

St rokelLabel s()

General description

Creates anew Pie plot from the supplied data. By default each slice will have alabel corresponding to
the percentage of the sum it Each plot may have an arbitrary title which can be accessed through the
“title” property in the PiePlot class. The title will be automatically centred on top of the PiePlot clear of
any possible labels. To set thetitle use the Set() method , i.e. $plot->title->Set(“MyTitle")

PiePlot($datay)
Parameters:
$datay

Description:
Creates a new scatter plot from the coordinate arrays given.

Returns:
NA

See also:
Example:

SetCenter($x,$y=0.5)

Parameters:
$ Center y in percentage of height
Sy Center x in percentage of width

Description:
Set the center for the pie plot. Default isto be in the center of the image.

Returns:
NA

See also:
SetSize()

Example:
$plot->SetCenter(0.3, 0.4);

SetSliceColors($color)

Parameters:
$color Array of colorsto use

Description:
Set an array of colorsto use for the different slices. If you have more slices than colors the colors will
be rotated from beginning.

Returns:
NA

See also:

Example:
$plot->SetColors(array(“blue”,” green”,”red”,” orange”));

SetStartAngle($angle)

Parameters:
$angle Anglein radian (O<$angle<2*PI)

Description:
Thefirst slice normally start at 0 degree. This method lets you specify at which angle the first slice
should start. Note that the angle is specified in radians.

Returns:
NA

See also:

Example:
$plot->SetStartAngle(M_P1/4); /] Start at 45 degree angle

SetFont($font_size, $font="internal")

Parameters:

$font_size Set Font size
$font Font type
Description:

Specify font for labels

Returns:
NA

See also:

Example:
$plot->SetFont(FONT1_BOLD);

SetSize($size)

Parameters:
$size Size in percentage of the minimum of the height or width

Description:

Set the radius of the pie plot in percentage of the minimum of the width and height of the image.

Returns:
NA

See also:

Example:
$plot->SetSize(0.3);

SetFontColor(Color $color)

Parameters:
$color Color

Description:
Specify color for labels on the pie plot

Returns:
NA

See also:
Example:

SetLegends(Array $legends)

Parameters:
$legends Array of legends for each pie slice

Description:
Returns:
NA

See also:
Example:

HideLabels(Boolean $f=true)

Parameters:
$f TRUE = Hide labels

Description:
Specify wheter or not labels should be displayed.

Returns:
NA

See also:
SetFontColor(), SetFont()

Example:

SetPrecision(int $prec, Boolean $psign=true)

Parameters:

$prec Number of digits precision for the |abels of the pie plot
$psign TRUE if each label should have an ending ‘%’ sign

Description:
Specified to what precision the labels should be displayed..

Returns:
NA

See also:
NA

Example:
$pl->SetPrecision(2);

Stroke(&$img)

Parameters:
$img Image to stroke to.

Description:
Internal method should never be called directly. Stroke the pie plot to the specified image.

Returns:
NA

See also:

Example:

StrokeLabels($label,$img,$xc,$yc,$a,$r)

Parameters:

$label Text label to print

$img Imageto print to

$xc X-coordinate for Center of pie chart
$yc Y-coordinate for Center of pie chart
$a Angleto plot label at

$r Radius of pie plot

Description:
Drawsthe labels for each slide. Normally the ang e is choosen to be in the middle of the slice. Internal
method and should never be called directly.

Returns:
NA

See also:

Example:

1.4 Internal class reference

Note: All the following classes are internal to JpGraph and should never be instantiated from dientsto
JpGraph. They are only documented for completeness and for those who whish to extend JpGraph.

6.3.27 Class ImgStreamCache

Defined in file: jpgraph.php
Public properties

Public methods
I ngSt r eantCache()
Put AndSt r ean()
Get AndSt r ean()

Private properties & methods

General description

Thisisan internal class which is used by the Graph to handle streaming and caching of the generated
image. This class should never be instantiated by a user of the library. It is only documented here for
completeness.

ImgStreamCache(Class Image &$img, String $cacheDir=CACHE_DIR)

Parameters:

$img Image to be streamed

$cacheDir Cache directory to look for potentially cashed version of the image
Description:

Internal class to Image which handles the streaming and pot ential caching of images to file.

Returns:
NA

See also:

Example:

PutAndStream(Class Image &$img, String $fileName)

Parameters:

$img Theimage to stream
$filename Filename of cashed version
Description:

If filename is given then the image will be staed in the cache under that name. The image wil then be
streamed back to the browser.

Notel that this should be the last call since nothing else can be sent back to the browser after this call.
Note2 Thisis an internal method that never should be called directly by a user of this library.

Returns:
NA

See also:
Example:

GetAndStream(String $fileName)

Parameters:
$filename File name

Description:

Tries to find the file with specified name and then stream that file as an image back to the
browser.

Returns:
Falseif no file was found.

See also:

Example:

6.3.28 Class Image

Defined in file: jpgraph.php
Public properties

Public methods
AddQbser ver ()

Set Font ()

Get Font Hei ght ()
Get Text W dt h()
StrokeText ()

St r okeBoxedText ()
Set Mar gi n()

Set Col or ()

Set Tr anspar ent ()
Set Li neVeéi ght ()
Set St art Poi nt ()

Li ne()

Li neTo()

Arc()

Pol ygon()

Fi | | edPol ygon()
Rect angl e()

Fi | | edRect angl e()
ShadowRect angl e()
Poi nt ()

DashedLi ne()

Set | ngFor nat ()
Private properties & methods
I mage()

Not i f yObservers()
Header s()
Stream()
Destroy()

General description
Represent the lowest layer. Contains all the drawing primitives that directly generates an image.

Instantiated
$graph->img

Image(int $width, int $height, String $format="png")

Parameters:

$width Width in pixel of the generated image
$height Height in pixel of the generated image
$format Graphic format for the generated image
Description:

Creates a new image width the specified width and heigh. Depending on the value of $format three
different graphic formats are supported

?7? png
72 jpg
7 gif

Note that the actual supported formats are dependent on the specific version of the GD library.To use
jpg format and additional library must normally also be installed. See documentation on graphic
formatsin PHP manual.

Returns:
A handle to the newly created image

See also:

Example:

AddObserver(String $meth, Object &$obj)

Parameters:

$meth Name of method to be called

$obj The object where the method exists.
Description:

Adds an observer to the image class which gets called when basic values are changed, such as the
margins of the image. The registred observer will be called with the a reference of the current instance
of the Class Image

Returns:
NA

See also:
NotifyOnservers()

Example:
$i ng- >AddCbserver ("1 ni t Const ants", &t hi s);

NotifyObservers()
Parameters:
NA

Description:
Calls all previously registered observers for this instance of Image. All the called observers will get
called with areference to the instance of this class as the first parameter.

Thisisreally an internal method that never should be called. It is only described here for completeness.

Returns:
NA

See also:
AddObserver()

Example:
$img>NotifyObservers()

SetFont(int $size, String $name="internal")

Parameters:

$si ze Font nane/ si ze
$nane Type of font
Description:

Soecify the font to be used for a successive call to StrokeFont(). Version 1.0 of JpGraph only supports
internal fonts. The available internal fonts are specified with integers between 0-4 or with the symbolic
constants according to the table

Font style
Size Regular Bold
Small FONTO
Normal FONT1 FONT1_BOLD
Large FONT?2 FONT2_BOLD

Table 1. Available internal fonts.

Returns:
NA

See also:
StrokeFont(), GetFontHeight(),GetFontWidth(),SetColor()

Example:

$gr aph- >i mg- >Set Col or (“dar kred”);

$gr aph- >i ng- >Set Font (FONT1_BOLD) ;

$gr aph- >i ng- >St r okeFont (50, 20, " Revenue”, "center”);

GetFontHeight()

Parameters:
NA

Description:
Return the font height in pixels of the current active font.

Returns:
NA

See also:
GetTextWidth(), SetFont()

Example:

GetTextWidth(String &$txt)

Parameters:
$txt text string

Description:
Returns the width in pixel of the entire text string supplied.

Returns:
Textwidth in pixels

See also:
SetFont()

Example:

StrokeText(int $x, int $y, String $txt, String $halign="left", String $dir="h")

Parameters:

$x Hori zontal coordinate for text

$y Vertical coordinate for text

$t xt Text to be stroked

$hal i ng Hori zontal alignnent

$dir Direction (Horizontal or vertical)
Description:

Draws the specified text string at the specified position. Depending on the value of $haling the x-
coordinate is interpret as:

$haling $x
“Left” Interpret as the left edge of the textstring
“Center” Interpret as the center of the text string

| “Right” | Interpret as the right edge of the textstring |

Returns:
NA

See also:
SetFont(), GetFontHeight(), GetTextWidth()

Example:
$gr aph- >i ng- >St r okeText (50, 20,” MWy first title”,"center”);

StrokeBoxedText(int $x, int $y, String $txt, String $halign, String $dir, Color $fcolor,
Color $bcolor, Boolean $shadow=false)

Parameters:

$x Hori zontal coordinate for text

$y Vertical coordinate for text

$t xt Text to be stroked

$hal i ng Hori zontal alignnent

$dir Direction (Horizontal or vertical)

$f col or Fill color, if false no fill color will be used
$shadow TRUE if the box should have a drop shadow
Description:

Similar to StrokeText() but this method draws, a possible filled, box around the text. The box may also
have a drop shadow.

Returns:
NA

See also:
SetFont(), GetFontHeight(), GetTextWidth(), StrokeText()

Example:

SetMargin(int $Im, int $rm, int $tm, int $bm)

Parameters:

$lm Left margin in pixels
$rm Ri ght nmarging in pixels
$tm Top margin in pixels
$bm Bottom margin in pixels

Description:
Specifies the margin area between the plot - area and the end of theimage. The margin should be big
enough to hold any titles, labels or other text you want to be visible there.

Returns:
NA

See also:

Example:
$gr aph- >i ng- >Set Mar gi n(20, 20, 30, 30);

SetColor(Color $color)

Parameters:
$col or Col or

Description:

Specify draving color for the following draw primitives. All consecutive callsto Ling(), Rectangle(),
Arc() etc. will be drawn using this color. A color may be specified either as the RGB-triple or as one of
the predefined color names. Se chapter XX for alist of pre-defined color names.

Note. Y ou should never call this function directly from user code since all defined drawing object (e.g.
LinePlot()) have a SetColor() method which saves each objects own color which is then set (using this
method) before the object is stroked to the image.

Returns:
NA

See also:
SetTransparent()

Example:

$gr aph- >i ng- >Set Col or (“red”);

/1 or SetColor(array(255,0,0)) or SetCol or(array(#FF,0,0))
$gr ph->i ng->Li ne(0, 0, 10, 10);

SetTransparent(Color $color)
Parameters:
$col or Transparent col or

Description:

Specify which color should be transparent. Note that if you use a shadow on the image the upper right
“nonshadow” and the lower left “non-shadow” will always default to color white. This means that if
your page has a background you shold normally specify white as transparent to avoid a small white
area at the corner of the shadow.

Returns:
NA

See also:
SetColor()

Example:
$gr aph- >i ng- >Set TRansparent (“white”);

SetLineWeight(int $weight))

Parameters:
$weight Lineweight in pixels

Description:
Specify the line weight for Line(), LineTo() methods.

Note that the line weight will not be applied to Rectangle(), FilledRectangle(), Arc()

Returns:
NA

See also:

Example:
$i ng- >Set Li neVéi ght (2) ;
$i mg- >Li ne(0, 0, 200, 100) ;

SetStartPoint(int $x, int $y)

Parameters:

$x x-coordinate
By y-coordinate

Description:
Specify a start x-y-point for the next LineTo() call.

Returns:
NA

See also:
LineTo()

Example:
$i ng- >Set St art Poi nt (10, 10) ;
$i mg- >Li neTo(100, 100); /I Draw a |line between (10,10) and (100, 100)

Arc(int $cx, int $cy, int $width, int $height, int $start, int $end)

Parameters:

$ex Center x-coordinate
$oy Center y-coordinate
$width Width of arc in pixels
$height Height of arc in pixels
$otart Start angle (in degrees)
$end End angle (in degrees)
Description:

Draw an arc with the given coordinates and specifications.

Returns:
NA

See also:

Example:
$i ng- >Ar ¢(100, 100, 25, 25, 0, 360) ; /1 Draw a circle wi dth radius=25 pi xels

Line(int $x1, int $y1, int $x2, int $y2)

Parameters:

$x1,$y1 Sart point
$x2,$y2 End point
Description:

Draw aline between the specified coordinates.

Returns:
NA

See also:
SetLineWeight()

Example:
$i mg- >Li ne(0, 0, 100, 100);

Polygon(Array int $points)

Parameters:
$points Array of coordinates

Description:
Draws an polygon between all the data points specified in the array “ $points’

Returns:
NA

See also:
SetColor(), FilledPolygon()

Example:
$pnts = array(0, 0, 10, 15, 12, 15, 12, 30, 40, 30);
$i mg- >Pol ygon($pnt s) ;

FilledPolygon(Array int $points)

Parameters:
$points Array of coordinates

Description:
Draws afilled polygon between all the data points specified in the array “$points”

Returns:
NA

See also:
Polygon(), SetColor()

Example:
$pnts = array(0, 0, 10, 15, 12, 15, 12, 30, 40, 30) ;
$i mg- >Fi | | edPol ygon($pnt s) ;

Rectangle(int $xI, int $yu, int $xr, int $yl)

Parameters:

$xl, $yu Upper left corner
$xr, $yl Lower right corner
Description:

Draw arectangle

Returns:
NA

See also:
SetColor()

Example:
$i ng- >Rect angl e(20, 10, 50, 60);

FilledRectangle(int $xI, int $yu, int $xr, int $yl)

Parameters:

$xl, $yu Upper left corner
$xr, $yl Lower right corner
Description:

Draw afilled rectangle

Returns:
NA

See also:
Rectangle()

Example:
$i mg- >Fi | | edRect angl e(20, 10, 50, 60) ;

ShadowRectangle(int $xI, int $yu, int $xr, int $yl, Boolean $fcolor=false, int
$shadow_width=3, Color $shadow_color="gray40")

Parameters:

$xI, $yu Upper |eft corner

$xr, $yl Lower right corner

$f col or Fill color of rectangle
$shadow_wi dt h W dth of shadow
$shadow_col or Col or of shadow
Description:

Draws a filled rectangle with a shadow. If fcolor=false then no fill color will be used.

Returns:
NA

See also:
Rectangle(), Filledrectangle()

Example:

LineTo(int $x, int $y)

Parameters:
$x,$y End coordinate for the line

Description:
Draw aline between the previous end point for previous LineTo() to the point specified as parameter.
The previous start point may also be specified with a call to SetStartPoint()

Returns:
NA

See also:
SetStartPoint()

Example:

Point(int $x, int $y)

Parameters:
$x, 9y End coordinate for the line

Description:
Set asingle pixel.

Returns:
NA

See also:
SetColor()

Example:

DashedLine(int $x1, int $y1, int $x2, int $y2, int $dash_length=1, int $dash_space=4)

Parameters:

$x1,$y1 Start point

$x2,%y2 End point

$dash_length Length, in pixel, of line segment
$dash_space Spec, inpixels, between line segments

Description:
Draws a dashed line with the specified parameters.

Note that this is a much more computationally expensive then drawing a straight line with either
LineTo() or Line()

Returns:
NA

See also:
Ling(), LineTo(), SetColor()

Example:
$i ng- >DashedLi ne(0,0,30,50); // Draws a “dotted” line

Headers ()

Parameters:
NA

Description:
Internal method. Should never ever be called by a client. Only documented for completeness.

Outputs the necessary headers to the browser in preparation to send the raw binary data that represents
the image.

Implementation note: If you look at the implementation of Headers() you find that it is possible to
output two versions of the header, one simple and one slightly more complicated. This is controlled by
the instance variable $this->expired .

If thisinstance variable is true the header output will try to tell the browser not to cache the image, note
that thisis not foolproof since there is no standard way of guaranteeing the no-caching in browser.

The default value of $expired is TRUE.

Returns:
NA

See also:

Example:

Destroy()

Parameters:
NA

Description:
Returns resources allocated when the image was created.

Note. Thisis normally not used when generating on-line images but useful to free resources when
images are just generated to files.

Returns:
NA

See also:
NA

Example:

Stream(Stream $file="")

Parameters:
$file File nane to save inmage in

Description:
Streams the generated file either to a specified file (if parameter given) or directly back to the browser
if no file name has been supplied.

Returns:
NA

See also:

Example:
$i ng- >St r ean(“ exmapl el. png”); /1 Save the generated inmage in a file

SetimgFormat(String $format)

Parameters:
$format Specifies graphic format

Description:

Specify the graphic format to be used.

Thisisalow level internal method. Should not be called directly. The graphic format is normally
specified when creating an instance of the Image() class.

Allowed graphic formats are:
?? png
77 jpg
7 gif

Returns:

TRUE If the graphic format is supported by the installation of PHP
FALSE Otherwise

See also:
Graph()

Example:

6.3.29Class TTF
Defined in file: jpgraph.php
Extends --

TTF

Public properties

Public methods

Private properties & methods

General description
Handles loading of TTF font files and translation to specific TTF file names. Thisis an internal class
and should never be used directly by clients to JpGraph library.

TTF()

Parameters:
NA

Description:
Initiates TTF fonts by setting the corresponfing file names.

Returns:
NA

See also:

Example:

MethodName()
Parameters:

Description:

Returns:
NA

See also:

Example:

6.3.30 Class Gradient
Defined in file: jpgraph_bar.php
Extends --

Gradient

Public properties

Public methods

Private properties & methods

General description
Handles all aspects of Color gradient fill. Internal class.

MethodName()

Parameters:
Description:

Returns:
NA

See also:
Example:
MethodName()
Parameters:
Description:

Returns:
NA

See also:

Example:

6.3.31Class RGB

Defined in file: jpgraph.php
Public properties

Public methods
RGB()

Col or ()

Al | ocat e()

Private properties & methods

General description
Defines symbolic color names and handles alocation of colorsin the image. This is an internal class

used by Image.

The following colors are predefined any other color can be specified by giving it's RGB triple as the
argument to any SetColor() method.

[]
[]
[]
[]
[]
B

DiAntiguelhitel 1:Antiguelhitez 2iAntigquellhited JiAntiguelhited dialiceblue Srantiguenhite

[]
[]
[]
[]
[]
[]

B raguamarine 7 raguamarinel 5 raguamarinez 9:aguanarined 10 agquanarined 11 :azure

[]
[]
]
]
[]
]

12 razurel 13:azurez 14 1azureld 15:azured 16:heige 17 :bisgue

[]
[]
[]
[]
H
[]

18:hisguel 19:hisgue 20hisgued 21 :hisgqued 22:hlack 23 thlanchedsalmond

el

shrown 27 tbrownl 28:brownz 29:hrownd

o

Zh:blueviolet 2

L]
£
o
=
=
b

[]
[]
[]
[]
[]
[]

ur-1ywoodd 32 :hur-lywoocdl 33:bur lywood 2 3d :hur lywood3 35:bur L ywoodd

o

30 thrownd 31:

[]
[]
[]
[]
[]
[]

lue 37 :icadethluel 38 :icadethlus? 39:cadethluel 4o icadethlued 41 :chartreuse

o

36 :cadet

[]
[]
[]
]
[]
[]

42 :chartreusel 43 ichartreuses d4d :chartreused 45 :ichartreuszed d&ichocolate 47 ichocolated

S2:corall S3:coralz

o
=
=}
=
o

dchocolatez 49:chocolatel G0:chocolated He

[]
]
[]
[]
[]

a

=)

sovanl

o
=2
[}
[t
&
=

S4:icorall 53:corald 56 :cornf lowerblue 57:cornsilk

B

=

arkcyan 65 idarkgoldenrad

]
=

He

e
o
=
o]
o
=3
[}
[
o
=
T
o
i8]
b}
e
]
5
=Y
@
]
o
o
=
2
o
=
=
T

[]
[]
[]
[
[]
]

=

g6 darkgoldenrodl 67 :darkgoldenrodZ 65:idarkgoldenrod3 69 :darkgoldenrocd Fodarkgray 71 darkgreen

[]
]
]
[]
[]
[]

72 wdarkkhaki Fa:darkmagenta Fdidarkolivegreen 7h:idarkolivegreenl 7o:idarkolivegreenz 77 :darkolivegreen3

78:darkolivesreend 79 darkorange 0 rdarkorangel 51 idarkorangez 52 warkoranges 53 tdarkoranged

ed

f

fd rdarkaorchid 5 darkarchicl 6 rdarkarchidz &7 idarkaorchids G sdarkarchicd G9:darkl

[]
[]
[]
[]
[]
[]

A :darksalmon 9 idarkseagreen 92 :idarkseagreenl 93:idarkseagreen? 9d:idarkseagreend 98:idarkseagreend

]
]
[]
[]
[]
[]

Q6 wdarkslateblus 97:idarkslategray 98idarkslategrayl 99:darkslategrauz 100:darkslategragd 101 :darkslategrayd

10z darkturguaise 103 darkviolet 104 rdeeppink 105 deeppinkl 106 :deeppinksz 107 ideeppink3

168 ideeppinkd 109 deepskublue 110:deepskubluel 111 ideepskyblue? 112 :deepskublued 113 :deepskublued

114 :ddimgtay 115 codgerhlue 116 dodgerbluel 117 rdodgerblue2 118 scodgerblues 119 dodgerblued

[]
]
[]
]
]
]

1z0eggplant 121:Firebrick 122 firebrickl 123:firebricks 124 :firebrick3 125:Firebrickd

]
[]
[]
o
[]
]

126 forestgreen 127 :gainsboro

-
[
=3
.
(=]
=
I
I
A
.
(=]
=S
=
o
1%}
z
.
(=}
=
o
[}
I
Ly
=4
.
=)
o
o

[]
[]
[]
[]
[]
]

[
[
P2
i,
=}
o
=

133 :goldenrod 134 :goldenrodl 135 :goldenrod2 136 :goldenrod3 137 igoldenrodd

[]
]
]
‘m
]
[]

-
L
@
g
v
@
=
-
=)
I
g
v
@
=
=S
=
=
5
L%
o
@
ey
=]
=
£
[
.
v
@
[y
o]
=
B
S
7
i
@
[y
E

14

]

grayd

[]
[]
[]
[]
[]
[]

|—~
=
E
I
Il
@
i
=
=
s
o
W
=
@
=
~1
=
B
&
o0
=
@
©
=)
[T
.
~1

tgrayd 1

I
=

g,
"
m
m
=

149 :greenyellon

[]
[]
[]
[]
[]
]

150 honeydew 151 shotpink 152 ihotpinkl 153 :hotpink2 154 shotpinks 1558 :hotpinkd

[]
[]
[]
[]
]
[]

156 1indianred 157 rindianredl 158 indianredz 159:indianreds 160 indianredd 161 :ivary

[]
[]
[]
[]
[]
[]

162 :ivaryl 1631 ivaryz 164 rivorys 165 1 ivorud

=
o
o
=
=
o

@
=
=N
=4
=
=
o

@
=

[]
[]
[]
[]
[]
[]

168 tkhaki2 169 :khaki3 170:khakid 171 :lavender 172:lavenderblush 173:1avenderblushl

[]
[]
[]
[]
[]
[]

174 :lavenderblushz 175:1avenderblush3 176:1avenderhblushd 177 1 lawngreen 178 1emonchiffon 179:lemonchiffonl

[]
[]
[]
[]
[]
[]

150 :1emonchiffonz 1Gl:lemonchiffond 158Z2:lemonchiffond 153:lighthlue 154 :

—

ighthluel 185:

ighthluez

[]
[]
[]
[]
[]
[]

186:

ightblued 187 :lighthlued 188:1lightcoral 189:lightcuan 1596

_

ightoyanl 191

ightoyanz

[]
[]
[]
[]
[]
[]

192:

ightoyans 193:lighteoyand 19d4:lightgoldenrod 195:1ightgoldenrodl1®é light goldenrodz2197 11ightgoldenrods

[]
[]
E
[]
[]
[]

L9G:lightgoldenrat®e :lightgoldenraodyel low 200:1ightgray 201

—

ightgreen Zzilightpink Z03:lightpinkl

[]
[]
[]
[]
[]
[]

20d:lightpink2 205:1ightpink3 206:lightpinkd 207 :lightzalmon 208:lightsalmonl 209:1ightsalmonz

[]
]
[]
[]
[]
[]

2l0:lightzalmond 21i:lightzalmond 212:lightseagreen 213:lightskublue 21d:lightskybluel 215:1ightskubluez

[]
[
[]
[]
[]
[]

Zl6:lightskublued 217:lightskyblued Z215:lightslateblue 219:lightslategray z20:lightsteelblue Zz1:lightsteelbluel

[]
[]
[]
[]
[]
[]

222:lightsteelbluez223:lightsteelblue322d i lightsteelblued Z25:1ightyellow Z2hilimegreen 227:1linen

228 magenta 229 magental Zaimagenta Zalimagentad 232 mmagentad 233 imaroon

[]
[]
]
]
[]
]

234 rmaroonl 235 maroonz Z36 tmaroond 237 imaroond 238 mmediumaguanarine 239 :mediumblue

2d0medivmorchid 241 imediumorchicdl 242 :imediumorchid? 243 :mediumorchid3 2dd:mediumorchidd 245 :mediumpurple

246imediumpurplel 247 imediumpurple? 248:imediumpurpled 249:imediumpurpled 250 imedivmred 251 imediumseagresn

[]
[]
[]
]
]
[]

02 mmediumsl ateblughs imediumspr inggreedSd tnediunturgquoise 2G5 imediumyialetred 256 :midnighthlue 287 mintorean

[]
[]
[]
[]
[]
[]

288 :mmizturose 289:mizturosel 260 :mistyrose2 26l mmiztyrosel 262 imistyrosed 263 imoccasin

[]
[]
[]
[]
[]
]

264 inavajowhite Z60inavajowhitel 266:ipawvajowhite? 267inavajowhited 268:inavajowhited 269 navy

[]
[]
[]
[]
[]
[]

270:oldlace 271 :olivedrab 272 olivedrabl 273:0livedrabZ 274 rolivedrakd 75 mlivedrabd

[]
[]
[]
[]
[]
[]

27

=]

lorange 277 ;orangel 275 :orange 279:oranged 280 1oranged 281 :orangered

[]
]
]
]
[]
[]

282 iorangeredl 283 orangered? 284 rorangeredd 285 orangeredd 286:orchid 287 orchidl

[]
[]
]
[]
[
[]

288 orchidz 289:orchid3 200 archicd 2891 :palegoldenrad 292 :palegreen Z893palegresenl

[]
[]
[
[]
[]
[]

284 :palegreenz 295:palegreens 296 :palegreend 2897 ipaleturquoize 29G:paleturguoizel 293:paleturguoisez

=1

[]
[]
[]
[]
[]
[]

Jotpaleturguoised 301 ipaleturguoised 302:palevioletred 303:palevioletredl 304:palevioletred? 305:palevioletred3

]
[]
[]
[]
[]
[]

I6ipalevioletredd 307 papayawhip 308 tpeachPuffl 309 peachpuff 310 :peachpuffz 311 :peachpuf£3

[]
[]
[]
[]
[]
[]

Flz2 :peachpuffd 3

=9
3]
=
g
3
=
[
=t
™
=
=
=
=
[
=t
2]
=
=
=
=
[
]
=t
o
=
=
=]
=
[N
o
=4
-l
=
=
=
[

[]
[]
[]
[]
[]
[]

ik

=

ipinkd

2]
=1
=
=
=
=
a5}
5]
=3
=
=
=
=4
L
[
[y
=]
=4
=
=
Fa
a5}
[
ra
=
=
=
=
T
2}
55
35}
=
=
=
=S

[]
]
]
]
]
]

}=3
=3

F2d ipowderhblue ed

[
)
o
=
=
3
=
—
m

F26purplel 2T purpled 328purpled 32900

[
[]
[]
[]
[]
[

o]
o
=1
%
g
=3

331 :rosybrown 332 irosybrawnl 333 rosybrownz 334 rrosybrownd 335 irosybrannd

336:irovalblue 337 irovalbluel 338 :rovalblus2 33%:rovalbluel 3d0irovalblued 341 isadd]ebrown

342 rzalmon

348 1zeagreen

]

3594 1zeashelll

Jetiziennaz

]

366 rskyb

="

uez

372:zlateblue3

Fr8islategrayd

354 1springgreenl

F90:steelhluez

408 tonat.od

‘m

[]

426 :whitesmoke

]

432 1yellowgreen

4o8:turguoise

H5:violetred

421 wheatl

427 yellow

[]
[]
[]

343 rzalmonl

]
[]

344 1zalmong 345isalnond 346 rzalmond 37 rzandybrown

[]
[]
[]

]

349 :zeagreenl 300 seagreen?

]

351 :zeagreens 352 1zeagreend 353 1zeashell

[]
[]
]

]

3535:zeashellz

356 :seashelll 337 :zeashelld 355 zienna 359 :siennal

[]
]
[]
[]

36lisiennad

]

F62isiennad 363isilver 364 iskyblue 365 i skybluel
367 rskyblues 368 rskyblued 369:slateblue F70slatebluel F71:zlatebluez

]
[]
[]
[]

373:slateblued 374:slategray

[]

375:slategrayl 376:slategray? 377 :zlategrayd

[]
[]
[]
[]

a7

=

ssnowl 36

=3

isnowZ 3

=
=4

ssnow3 35,

Fa

sEnowd 383 :ispringgreen

[]
[]
]
[]
[]

385:springgreenz 386:springgreen3d 387 ispringgreend G55 :1steelblue F59:zteelblusl

F91:steelblued

[

w
e
s
o
o
E
w
e}
£

[

=
B
=
=
5]
[r:]
=]

392 :zteelblued

{_
[

[
[rs]
=
o
@
=
ES
w
]
@

{_
[]

1
m
£

]

399:thistle dodithistlel

do3:thistled i)

=4

stomato dob:tomatol 406 rtomatoZ 407 :tomato3

[]
[]
[]
[]
]

dlo:turguoizel 41l :turguoizez 41z rturgquoises d15:turgquoised

Haivioletredl 417 violetreds 418 ivinletreds 419 ;:vinletredd

[]

[]
[]
[]
[]

422 :heat.2 4235 iheats 424 :wheatd 425 :hite

[]
[]
[]
[]
[]

4z yel lowl d29:yellowz 430 yellows 43l yellowd

Table 2 . Predefined color names.

RGB(Class Image &$img)

Parameters:
$img Image where the colors should be allocated

Description:
Create a new instance of the color handling class.

Returns:
NA

See also:
Example:

Color(Mix $color)

Parameters:
$color Either a RGB triple or a color name as a string

Description:
Tranglates a color name to a RGB triple. If an RGB triple is passed through it is returned directly unless
itisgivenin hex, in that caseit isfirst translated to decimal

Returns:
An RGB triple

See also:

Example:
$c = RGB:: Col or (“#FFFFFF");
/1 $c == array(255, 255, 255)

Allocate(Array $color)

Parameters:
$color Color given as either RGB triple, color name or hex-string

Description:
Allocates a new color in the image to which the RGB class belongs. Note that the very first color you
allocate (index 0) will become the background color.

Returns:
Color index in image palette.

See also:

Example:

6.3.32 Class FontProp
Defined in file: jpgraph_spider.php
Extends --

FontProp

Public properties
Set Font ()

Set Col or ()
Public methods

Private properties & methods

General description
Internal classin spider used to enable the syntax $spider_plot->title->SetFont() by creating a sort of
shadow class which isinstantiated as poperty “title” in the spider plot.

SetFont($family,$style=FS_NORMAL,$size=12)
Parameters:

$family Font family

$style Font style

$size Fontsize

Description:
Specify font

Returns:
NA

See also:
NA

Example:
SetFont(FF_ARIAL,FS_NORMAL,12);

SetColor($color)
Parameters:
$color Named color or RGB array

Description:
Specify color

Returns:
NA

See also:
NA

Example:
Set Col or (“gray2”);

6.3.33 Class Rotimage
Defined in file: jpgraph.php

Extends Image

Image

Public properties

Rotlmage

Public properties

Public methods

AddCbser ver ()

Set Font ()

Get Font Hei ght ()
Get Text Wdt h()

Public methods

StrokeText ()

St r okeBoxedText ()
Set Tr anspar ent ()
Set Li neWei ght ()

StrokeText Set St art Poi nt ()
StrokeBoxedText{)- Li ne()

Set Col or () Li neTo()

Set Mar gi n() érf:() 0

Set Transparent ()} ol ygon
SetlLineVeight () Fi | | edPol ygon()
Set-StartPoint{- Rect angl e()
Hre- Fi |l edRect angl e()
LireTo()- ShadowRect angl e()
A Poi nt ()
Polygon()- DashedLi ne()

Eill edPol ygon()

Rectangle()-

FilledRectangle-

ShadewRestangle-

Pei—m—(—)-_

Bashed-ne-

Set | ngFor mat ()

Private properties & methods
| mage()

Not i f yObservers()

Header s()

Stream()

Dest roy()

Private properties & methods

General description
Exactly the same as Image but with the added twist that it rotateds the image» degreesall the
methods is exactly as in class Image().

RotImage($aWidth,$aHeight,$a,$aFormat=DEFAULT_GFORMAT)

Parameters:

$aWidth Image width in pixels

$aHeight Image height in pixels

$a Rotation angle

$aFormat Image format (encoding GIF, PNG, JPG)
Description:

Creates a Rotlmage class which implements the normal drawing primitivesin Images but handles a
rotation around (0,0) with a degree.

Returns:
NA

See also:
Image()

Example:
$img = Rotlmage(300,200,40, png”);

Manifest constants

In order to control certain behaviours of the library there are a number of DEFINE’s at the top of the file
‘jpgraph.php’. Their purposes are briefly discussed below. The default values for all these constants should
be fine for most uses of the library. However, “ power-users’ might want to tweak these, hence this

description.

Constant Default value Description

ERR_DEPRECATED Fal se Should the use if deprecated functions and
values give afatal runtime error?

BRAND_TI M NG Fal se Should the time taken to generate an image be

“branded” in the lower left corner of the image?

BRAND_TI NE_FORVAT

“Generated in: 01.3fs”

The actual format string for the time branding.

READ CACHE True Should JpGraph first look in the cache to seeif
theimage has aready been generated?
CACHE DI R “.Ijpgraph_cache” Location of cache directory. Note this directory

must be writablefor PHP.

USE_BRESENHAM

Fal se

Should a PHP implementation of the
Bresenhams's circle algorithm be used instead
of the built in GD Arc() drawing routine?
(Makes circles ook aesthetically better in some
few cases —the drawback being that do circles
in PHP are slower then native GD)

TTF DR

“./ttf”

Locaion for TTF fonts

DEFAULT_GFORVAT

“aut 0”

Which graphic format should be used (auto,
ipg, gif, png) If thisvalueis set to “auto” then
the best available format will automatically be
chosen. The preferred order is *png,gif,jpg”.

Drawing arbitrary shapes (using dummy graphs)
Disclaimer: Thisis an unsupported part of JoGraph.

To make it easy to try out arbitrary graphic drawings with all the normal support of JoGraph (like caching,
anti-aliasing etc) you can crate adummy graph. Thiswill in &fect give you a canvas where you can use al
the drawing primitives in the Image class.

Asusual you need to include both jpgraph.php and also the “ dummy” extension “jpgraph_dummy.php”

An example to draw asimple line would be

#i ncl ude <j pgr aph. php>
#i ncl ude <j pgraph_dunmy. php>

$graph = new DummyG aph(300, 200) ;

$gr aph- >i ng- >Set Col or (“red”);
$gr aph- >i ng- >Li ne(10, 10, 100, 100);

$gr aph- >St r oke() ;

Utilities

JpGraph 1.2 comes with two completely unsupported utility script to help with color selection and to
automatically generate a test page of images. Please note that thisis only tools | use myself which | thought
might be useful for someone el sethey are not supported in any shape or form!

Automatic generation of al test images (test-suit)

Running the script “testsuit_jpgraph.php” will generate an index list of all *.php filesin the current
directory. Thisisuseful if you run this script from the “Examples” directory. It will then generate an index
list with a link to all the example images. Thisis the tool used to manage all regression testsinternally in
the development of JpGraph.

This script may also be called with a parameter “style” as in “testsuit_jpgraph.php?style=1" or
“testsuit_jpgraph.php?style=2". In the latter case (style=2) the links will be replaced by the actual images.
You may then visually inspect all the generated images.

Color selection and upcoming support for color themes
Running the script “ gencolorchart.php” will generate (by default in the cache directory) a number of
images with color samples and also atheme page. Running the script should generate the following output:

JpGraph color chart

Generating color chart images ...
1. /ipgraph_cache/color_chartOl.gif
2. /ipgraph_cache/color_chart02.gif
3. ./jpgraph_cache/color_chart03.gif
4. /jpgraph_cache/color_chart04.gif
Generating color chart index page.

Generating themes...
1. /jpgraph_cache/themeO1.gif [24 colors in theme ‘earth’]
2. ./jpgraph_cache/theme02.gif [19 colors in theme "pastel]
3. .Jjpgraph_cache/theme03.gif [15 colors in theme 'water']
4. /ipgraph_cache/theme04.gif [11 colors in theme 'sand]
Generating theme index page.

Work done in: 3.64 seconds.

See Colorchart
See Index of themes

Figure 1. Output after running gencolorchart.php

The “Colorchart” is simple a page with all the named colors available in JpGraph. Y ou can see all the
colors by following the link “Colorchart” at the bottom of the page. The reason for braking up the colorsin
separate images is just the fact that the maximum number of colorsin one image is limited by the palette
size.

Note: Thisis agood example of the inefficiency of the GIF format as compared to PNG. Each of the
above generated GIF images are roughly 100K while the corresponding images generated as PNG is only
around 13K in size.

The “themes” index is just a collection of colors that make up a certain theme, i.e. “earth”, “pastel” etc.
Themesare upcoming feature for 1.3. This utility was just intended to help me to easily view what colors
are present in a certain theme. By using a certain theme (in 1.3 and above) your graph will automatically
draw colors from that theme, so for example all the default colors for the pie slicesin a pie graph will be
taken from the theme. Please note that the selection of colorsin a specific theme is based on my personal
judgement and may not agree with you. If you have additional themes you would like to use please send me
anote on jpgraph@aditus.nu

Asan examplethe “ earth” (a“professional” looking color themé) have the following tentatively
composition:

22ihlack 424 iwheat3 10 aguanarined 34 thur lywood3 40 icadethlued
H H [| L] [|
45:chartreuzed 42:ichocolates 62 icyand 63 idarkhlue 7d idarkol ivegreen
il
77wdarkolivegreend 119:dodgerhlued 120:eggplant 134 :goldenradl 136:goldentod3
] [|
141 :grauys 165 :khakiz la0:lemonchiffonz 209:lightzalmonl 218:lightskublued

] L]

246 :zalmond 305 :tanl 29 darkred 430 yel low2

Figure 2. The colorsin the" earth" theme (subject to change for 1.3).

JpGraph 1.0 Simplified Class Hierarchy

FontProp

SpiderAxis I

SpiderGrid

|
™~

SpiderGraph

Legend

ImgStreamCache I

Text

AXis

ScatterPlot I
I AcclLinePlot I
SpiderPlot I I
LinePlot
I GroupBarPlot I
Plot ——— L/
I'_\ AccBarPlot I
ErrorPlot I
TTF
Graph I I i
Image I RGB I
Ticks LinearTicks I
| —
Uses
LogTicks I <+—
: Extends
LinearScale I I
Abstract class
LogScale I
I Last updated: 10 Mar 2001
By: Johan Persson

Specifying fonts

JpGraph supports both a set of built in bit-mapped font as well as True Type Fonts. For scale values on axis
it is strongly recommended that you just use the built in bitmap fonts for the simple reason that they are, for
most people, easier to read (they are also quicker to render). Try to use TTF only for headlines and perhaps
thetitle for agraph and it’s axis. By default the TTF will be drawn with anti-aliasing turned on.

Fonts are generally specified with three parameters

1. Font family
2. Fontstyle
3. Fontsize

In the call to method SetFont(). If no specified styleis dsupplied then the style will default to normal style
(FS_STYLE) , size has default value of 12pt.

Built in bitmapped fonts
Built in fonts are chosen by using one of the font families

?? FF_FONTO (small size, does not support bold style)
?? FF_FONT1 (normal size)
?? FF_FONT2 (large size)

Built in fonts only supports style FS NORMAL and FS BOLD (and in the case of FF_FONTO only
FS_NORMAL) trying to specify an unsupported combination for built in fonts will not give an error but
will have no effect.

Note: To support backward compatibility with pre-1.2 bitmap fonts might also be specified with FONTO,
FONT1, FONT2 (note the missing prefix FF_). However these specifications are deprecated as of 1.2. And
usage of these will be acritical error in the next major release. It is strongly suggested that you use the new
naming conventions since that is designed to harmonise with the TTF support.

The size parameter has no meaning for built in fonts and will be ignored. The size isimplicitly set by
choosing the corresponding font family .

Some examples of how to specify the built in fonts

Set Font (FF_FONT1, FS_BOLD) ;

Set Font (FF_FONT1, FS_BOLD, 12); /1 Size 12 is ignored
Set Font (FONT1) ; /| Deprecat ed!
Set Font (FF_FONT2) ; /1 Use built in FONT1 using default style.

Set Font (FF_FONTO, FS_BOLD); // FONTO does not support bold style, will be ignored

True Type Fonts
Before you can start using True Type Fonts you need to make sure that

1. You have downloaded the TTF files. Due to it's size they are in a separate package from the JpGraph
script code.

2. TheTTF_DI R constant in jpgraph.php points to the directory where the font files may be found.

3. Youinstalation of PHP supports TTF (most should do)

By default JpGraph will ook for fontsin directory “. / TTF/ ”

In JpGraph 1.2 the font families and styles supported are listed in Table 1.

Font family Font style

PHP Constant Real name FS NORMAL | FS BOLD | FS BOLDI TALIC | FS_I TALIC
FF_COURI ER | Courier new & & &
FF_VERDANA | verdana et & 5
FF_TI MES Times New Roman &= &= &
FF_HADWRT Lucida Handwriting &
FF_COM C Comic Sans & &<
FF_ARI AL Avrial = = =
FF_BOOK Book Antiqua & & & &

Table 1 Available combination of TTF font familiesand styles

The use of aanillegal combination will give a runtime error indicating the type of problem, e.g. “Style not
supported for font family”. On additional thing to keep in mind when designing graphs is that even though
TTF may look more appealing from an aesthetic point of view they are much more time consuming to
render and also involves one additional disk access.

Some examples;

Set Font (FF_COURIER); // Courier normal 12 points

Set Font (FF_COURI ER, FS_BOLD); // Courier bold 12 points

Set Font (FF_COM C, FS_BCOLD, 16); // Comic Sans Serif, bold, 16 points

Adding new TTF fonts
If you have a particular favourite font which doesn’t come as default it is quite easy to add that font to
JpGraph as an extension. There are basically 3 things you need to do:

1. Getthe TTF file(s) and add it to your font directory. Y ou need separate files for each of the styles you
want to support. These different files uses the following naming conventions:
Normal font file = <basefilename>

Bold font file = <basefilename>" bd”
Bold italic file = <basefilename>"hi”
Italicfile = <basefilename>"i"

2. Define anew constant FF_xxxxx in jpgraph.php which names your font (at the top of the file)

3. Update Class TTF constructor in jpgraph.php with the mapping between your new constant and the
<basefilename>

That's it!
Anti-aliased line support
From version 1.2 JpGraph supports drawing of anti-aliased lines. There are afew caveats in order to use

thiswhich is discussed in this section.

Note that anti-alising will not be used for either horizontal, vertical or 45 degree lines since they are by
their nature are sampled at adequate rate.

Enabling anti-aliased lines
Anti-aliased lines are enabled by calling the method SetAntiAliasing() in the Image class, so for example
you would normally make the call

$gr aph- >i ng- >Set Ant i Al i asi ng()

to enable this feature. The anti-aliasing for lines works by “smoothing” out the edges on the line by using a
progressive scale of colorsinterpolated between the background color and the line color. Hence the line
drawing algorithm needs to know the background color. By default the line drawing algorithm looks at the
first point of the line to see what the underlying color is and then uses this as the background color. This
might not alwaysgive the best result since you might have several lines starting from the same point. Then
the first line will correctly read the background color but the second line (which starts from the same point)
will only see the previous lines color and not the real background color.

To solve this problem you can specify the background color as a parameter in the call to SetAntiAliasing()
method. This will then be used for all subsequent lines. For example a call would say

$gr aph->i ng- >Set Anti Al i asi ng(“white”);

to use “white” as the background color regardless what the color at start position of the lineis. An example
of where you must use thisisfor “spider-plots’ since the axis for the spider plot all overlap in the center.

Anti-aliased gotchas
There are also a couple of potential limitations (or gotchas) you probably would like to keep in mind when
using anti-aiased lines

1. Anti-aliaseslines are much slower then the normal lines, roughly 5 times slower. Remember that the

whole line-drawing algorithm is implemented in PHP since the underlying graph library (GD) doesn’t
support anti-aliased lines.

2. Anti-aliased lines uses up more of the available color-palette. The exact number of colors used is
dependent on the line-angle (number of lines with different angl es uses more colors). Hence it might
not be possible to use anti-aliasing with color-gradient fill since the number of available colorsin the
pal ette might not be enough. The color gradient is limited to use 100 color bands between the two
colors. A normd palette can keep around 256 colors (I’ m not 100% sure of the exact format used in the
JPG, PNG, or GIF standards)

3. All anti-aliased line should have the same background color if the color is specified in the call to
SetAntiAliasing(). Otherwise only the part of the line that covers the specified background color will
be anti-aliased. The same goes for lines where the color is automatically determined but here each line
may have its own background.

4. Anti-aliased lines will ignore the line width specified. They will aways have a width of roughly 1.

1 Using Spider Plots

1.1 Introduction

Spider plots are most often used to display how a number of results compare to some
set targets. They make good use of the human ability to spot symmetry (or rather un
symmetry) . the figure below show an example of a spider (sometimes called aweb-
plot). Spiderplots are not suitable if you want very accurate readings from the graph
since, by it's nature, it can be difficult to read out very detailed values.

Quality result

O actual
One M coal

Figure 1. Example of a spider graph with two plots.
The following points are worth noting:

There is one axis for each data point

Each axis may have an arbitrary title which is automatically positioned
A spider plot may be filled or open

Y ou can control color, weight of lines asyou are already used to

A spider plot can, as usual, have atitle and alegend

Thefirst axisis dways oriented vertical and is the only axis with labels
Grids may be used (dashed in the figure above)

You may have ticks (although suppressed in the figure above

Y ou can control the size and position within the frame of the graph
You may have severa plots within the same graph

N3NNI NYNINN

In the following section we show how to draw both simple and complex spider graph.
Aswe will show all the settings will follow the same pattern as for the more standard
linear graphs.

1.2 Creating asimple spider graph.

Let’s start by creating a very simple spider plot based on 5 data points using mostly
default values.

As the first thing you must remember to include the extension module that contains
spider plot. “jpgraph_spider.php”.

<?php
i nclude ("jpgraph. php");
i nclude ("jpgraph_spider. php");

/Il Sone data to pl ot
$data = array(55, 80, 46, 71, 95) ;

/| Create the graph and the pl ot
$graph = new Spi der Gr aph(250, 200) ;
$pl ot = new Spi der Pl ot ($dat a) ;

/1 Add the plot and display the graph
$gr aph- >Add($pl ot) ;
$gr aph- >St r oke() ;

2>

If you run the above script it will generate the following image

100

Figure2. A very simple spider plot
From the above image you may note the following have been set automatically

?? Each axis have been given a defaullt title (it's number)

?7? Magjor tick marks are displayed on each axis

?? The scale has been determined by autoscaling

?? The plot is filled by default

?? The size of the graph has been determined to fit within the given image size

1.3 Controlling size and position of plot

One of the ssmplest changes we can do is change the size and the position of the
graph. These two parameters are controlled by the two methods SetCenter() and
SetPlotSize(). The parameters of both these methods are in percentage.

To demonstrate lets make the plot smaller and move it a little bit to the left in the
image. This is accomplished by the lines

)/. S;et di aneter of spider graph to 40% of mi n(hei ght, wei ght)
$gr aph- >Set Pl ot Si ze(0. 4) ;

/] Position the centre of the graph at x=30% of the wi dth and y=50% of

hei ght
$gr aph- >Set Cent er (0. 3,0.5) ;

The resulting image will then be as displayed below

100

Figure 3. Resized and repositioned spider graph.

It is worth clarifying how the sizing works. Since the size is given in percentage you
might, rightfully so, ask percentage of what? Image height?, image width? Since the
axis can be in al directions we take the percentage of min(height,width).

1.4 Specifying titles for the axis and legends for plots

We normally would like something more meaningful as description of each axis then
it's number. Specifying the titles are accomplished through the use of the method
SetTitles() of the graph. Let’s say that each axis corresponds to a month.

$axtitles=array(“Jan”,”Feb”,”Mar”, " Apr”, "May") ;
$graph- >Set Ti t| es($axtitl es);

Let’s adso specify alegend for the plot

éBpi o.t ->Set Legend(" Def ects");

Let's also take the opportunity to set atitle of the graph

éBg-r a.ph- >title >Set(“Result 2001");
$graph- >titl e >Set Font (FONT1_BOLD) ;

The resulting graph are now starting to look alittle bit more pleasing as the following
figure illustrates

Result 2881
O pefects |
Jan
100
Feh Hay
Har Apr

Figure 4. Spider graph with legends, and titles.

1.5 Specifying gridlines
By default the graph has tick lines but no grid lines. Let’s change this so that we don’'t
have any ticks but use “dashed” gridlines instead.

To suppress ticks we could do it the same way as for linear graphs by calling the
SupressTickMarks() method of Ticks. This would be accomplished by

$gr aph- >axi s->scal e->ti cks- >Supr essTi ckMar ks();

Since thisis, in OO terms, aclean design isit still alittle bit unwieldy . Thereis
therefore a shortcut which lets you just say

éiig.r alph- >Supr essTi ckMar ks()

To set a“dashed” apperance of the grid you have to invoke the SetLineStyle() method
of the grid and to show the grid lines you just call, as before, the method Show() of

the grid as

iBg.r a.ph- >grid->Set Li neStyl e("dashed");
$gr aph- >gri d->Show() ;

The default color for grid is “silver” but you may of course easily change that by
invoking the SetColor() method on the grid.

Result 2881
O pefects

Jan
1y

Feh Hay

Har Apr

Figure5. A Spiderplot with gridlines and no ticks.

By design the plot is above the gridline but beneath the axis in image depth, hence
some part of the gridlines are hidden.

To have the gridlines more “visible” just change their color, say to, dark red by
invoking the SetColor() method as

$g} a.ph- >grid->Set Col or (“darkred”);

The resulting image will be

Result 2881
O pefects

Jan
_e-100

Feb .-~ . Hay

Har Apr

Figure 6. Spider graph with dark red grid lines

1.6 Setting background color and frame

By default the image has a frame with “white” as the background color. As you saw
for normal Linear plot we can have a background and a shadow of the frame. The one
difference between spider plots and linear plots is that there is no concept of margin
and plot area color, there is only one background color. Thisis set through the Color()
method of graphs.

To set a shadowed frame you just evoke the SetShadow() method of the graph. It has
the same parameter as the previous introduced Linear graphs.

Lets set thye background to a very light blue-ish color and add a shadow to the frame.
This is done by the two lines

$gr aph- >Set Shadow() ;
$gr aph- >Set Col or (ar ray(200, 230, 230)) ;

and the resulting graph
Result 2881
O pefects
o (o]
1100

Figure 7. Spider graph with background and shadow

1.7 Adding several plots to a spider graph

This is done exactly the same way as for the ather graph types, just call the method
Add() of class SpiderGraph for each plot you want to add. For spider plotsit is
important that all the plots have the same number of data points. The library will
check this and treat this as an error and abort the program.

Lets add a second plot to our previous graph and let’s make that an open plot, i.e. it is
not filled, and make the weight of the line 2.

$dat a2 = array(65, 95, 50, 75, 60) ;
$pl ot 2 = new Spi der Pl ot ($dat a2) ;
$pl ot 2- >Set Fi | | (fal se);

$pl ot 2- >Set Li neVei ght (2) ;

$pl ot 2- >Set Legend(“Target”);

$gr aph- >Add($pl ot 2) ;

The resulting graph will now look like

Result 2881

O pefects
Jan M Target

Figure 8. Spider graph with two plots.

1 Using the cache mechanism and other performance
related questions

1.1 Performance considerations

Since PHP is not a compiled language and the plot generated by this library require
non-trivial work by PHP this must be seriously considered in the overall designfor a
web site. Generating complex graphs with many data-points is bound to take time. As
arough guideline most of the graphs demonstrated above take in the order of 1-2sto
be generated and send back to a browser on aloca network using a rather old PCwith
adow disk asmy loca server (Pl 166MHZz). Experience shows that time spend is

roughly 30% parsing the actual PHP code and 70% of the overall time depends on the
complexity of the graphs. Hence no matter how simple graphs are you will have to

face at least a standard hit to generate each graph.

This might be unacceptable in a high volume site. There is not much we can do about
the complexity of the library if we want al this functionality and there islittle we can
do about the speed by which PHP parses the library.

However, we can do something. If you have non-real-time graphs that might only get
new data, say every, 24h. Then it would be possible to generate the image and then
save it in afile cache so that the next time a user requests this gaph it is read from
disk instead of generated by PHP. Every night we might then clear the cache and the
first user whom requests the graph the next day will take the hit of actually generating
it but the rest of the user will just be fetching the generate d cached version.

1.2 Using the cache mechanism

The cache mechanism kicks in if you call the graph constructor with an additional file
name as an additional parameter. One of two things will now happen

1. Thefile cacheis searched for afile with this name. If thefile existsit is read and
passed through to the browser with very little overhead.

2. Thefile does not exist in the cache. In that case the graph is generated in the
normal way but before it is passed back to the browser it is saved as afilein the
cache

To use the cache your call could for example be

$graph = new Graph(300, 200, "nyfil enanme. png”)

Note that In the above example | used the extension “*.PNG” for the file. To use any
specific extension is not necessary or any extension at dl in fact.

For the cache to work you must have a directory called “jpgraph_cache’ in the same
place as you run your script from since the library will search for a directory caled
“Jjpgraph_cache’. This directory must be readable and writeable for PHP. This
scheme is not completely free from hassle from a security point of view. The other
way would be to have a“globa” cache directory but this increases the risk for a name

clash and it might also not be possible if you are using some ISP that only allows you
to create files within your own area.

The name of the directory used for caching might also be easily changed sinceitis
defined in jpgraph.php as a

DEFI NE(“ CACHE_DI R", “./jpgraph_cache”)

near the top of the file. You could for example change it to some general temp area
(perhaps /var/tmp or similar) .

I’m not completely satisfied with the way this currently works since the cache
directory in practice must be writeable for everyone and his uncle unless you can
persuade the administrator to add you and PHP to the same group and then just make
the directory writeable for member so that group. Any suggestions on how to better
cope with this potential security whole are welcome!

1 Advanced features of JpGraph

1.1 Using grace percentage on scales

By default the autoscaling algorithm tries to make best possible use of screen estate by making the
scale as large as possible, i.e. the extreme values (min/max) will be on the top and bottom of the scale
if they happen to fall on a scaletick. So for example doing a simple line plot could look like the plot
shown in Figure 1 below.

Exanple of no grace in line plot

0,304 -

Figure 1. Example of graph with grace=0 (default values).

However you might sometime want to add some extra to the minimum and maximum values so that
thereis some “air” in the graph between the end of the scale values andthe extreme points in the
graphs. This can be done by adding a “grace” percentage to the scale. So for example adding 10% to
the y-scale in the image above is done by calling the SetGrace() method on the yscale as

$gr aph- >yscal e->Set G ace(10) ; /] Set 10%grace.

After thisthe graph will look like shown in figure below

Exanple of 18% grace in line plot
0,306 -

0,304 -
0,302 -

0, F00

0,295

0,795 1 1 | 1 1

Figure 2. Example of using grace for the Y-scale.

Asyou can see the dynamic range has been reduced by roughly 10% . The exact value will depend on
the endpoints chosen by the autoscaling algorithm. The grace simply works by adding the percentage
grace value of the dynamic range (maximum-minimum) and using those values as the min and max
values sent into the autoscaling algorithm.

Note: As you can see the above graph also makes use of SetCenter() for the lineplot so thet the
numbering on the x-axisis placed in the center of each tick-“ slot” .

As an example the complete code for the last graph in Figure 2 above is:

<?php
i ncl ude ("j pgraph. php");
i ncl ude ("jpgraph_line.php");

$datay = array(0.2980, 0.3039, 0. 3020, 0. 3027, 0. 3015) ;
$graph = new G aph(300, 200) ;

$gr aph- >i ng- >Set Mar gi n(40, 40, 40, 40) ;

$gr aph- >i ng- >Set Anti Al i asi ng();

$gr aph- >Set Scal e("textlin");

$gr aph- >Set Shadow() ;

$graph- >titl e >Set ("Exanpl e of 10%grace in line plot");
$graph- >ti tl e >Set Font (FF_FONT1, FS_BOLD) ;

$gr aph- >yscal e->Set G ace(10) ;

$pl1 = new Li nePl ot ($dat ay) ;

$pl->nar k- >Set Type(MARK_FI LLEDCI RCLE) ;
$pl->nark->SetFill Color("red");
$pl->mar k- >Set W dt h(4) ;

$pl->Set Col or (" bl ue");

$pl->Set Center();

$gr aph- >Add($p1) ;

$gr aph- >St r oke() ;

?>

Figure 3. The code that generated Figure 2 above.

1.2 Timing the generation of graphs

When evaluating the performance (or suitability for on-line graph genertation) for graphs there must be
asimple way to get a knowledge on the time it takes to generate a specific image. In JpGraph this
works by the possibility to brand each generated picture by the timein s (and ms) it took PHP to
generate that image.

This s controlled by the definition (in jpgraph.php)

DEFI NE(" BRAND_TI M NG', TRUE) ;

By specifying this constant true or false you can det ermine wheter or not you would like to have the
image branded by the time. The actual string that gets formatted is specified by the definition

DEFI NE(" BRAND_TI ME_FORMAT", "CGenerated in: 9%91.3fs");

This let’'s you easy customize the actual string that gets printed on the image. This string will always be
printed in the lower left corner of the graph. The image below show an example of a graph with the
time branded into it.

Example bar gradient fill

040
0.30F
0.20F

0.10F

0.00

F£ & ¢ & ¢ o

Generated in: 0.733s

Figure 4Graph with timing information. (on my very slow old server...)

13

Using color gradient fill

From version 1.2 it is possible to use color gradient fill for certain graphs. As of this writing only bar
graphs supports color gradient fill at the moment. In future releases of JpGraph there will be added
functionality to use gradient fill for backgrounds and possible area-graphs (filled lineplots).

Color

gradient fill fills the image with a smooth transition between to colors. In what direction the

transition goes (from left to right, down and up, fomr the middle and out etc) is determined by the style
of the gradient fill. JpGraph currently supports 7 different styles.

Before explaining how this feature is used you must be aware of two caveats with gradient filling:

1 gradient filling is computational expensive. Large plots with gradient fill will take in the order

of 6 timeslonger to fill then for a normal one-color fill. This might to some extent be helped
by making use of the cache feature of JpGraph so that the graph is only generated once or a
few times.

gradient filling will make use of much more colors (by definition) this will make the color
palette for the image bigger and hence make the overall image larger. It might also have some
severe effect on using anti-aliased line in the same image as color gradient filling since anti-
aliased lines also have the possibility to make use of many colors. Hence the color palette
might not be big enough for all the colors you need.

This problem is often seen as that for no apperant reason some color you have specified in the
image does appear as another color. (Thisis not a bug in JpGraph!) This is something to
especially watch out for when enabling anti-alising since that also uses a lot of colors. Since
the numbers of colors used with anti-alising depends on the angle on the lines it isimpossible
to foresee the number of colors used for this.

Different styles of gradient filling
The seven different styles are specified by using the specific PHP constants defined in jpgraph.php.
Currently the following styles are available:

Style

Description Example

GRAD_VER The gradient moves from left to right

Style Description Example
GRAD_HOR The gradient moves from top to bottom

GRAD_M DVER The gradient goes from the middle and
vertically up/down

GRAD_M DHOR The gradient goes from the middle and
horizontally left/right

GRAD_CENTER The gradient radiates from the center and
outwards.

to GRAD_MIDVER but with the
middle color taking up awider area

GRAD_W DE_M DHOR | Similar to GRAD_MIDHOR but with the
middle color taking up awider area

ESEEERE

Table 1. Different styles of color gradient filling

Using color gradient bar graphs

Y ou only need to create the barplot as usual and then call method Set Fi | | Gradi ent () whereyou
need to specify two colors and a gradient style. So for example to specify the

GRAD_WIDE_MIDHOR style asin the last examplein Table 1

$bar pl ot->Set Fi | | Gr adi ent (" navy", "I i ght st eel bl ue", GRAD_W DE_M DHOR) ;

1.4 Specifying fonts

JpGraph supports both a set of built in bit-mapped font as well as True Type Fonts. For scale values on
axisit is strongly recommended that you just use the built in bitmap fonts for the simple reason that
they are, for most people, easier to read (they are also quicker to render). Try to use TTF only for
headlines and perhaps the title for agraph and it’'s axis. By default the TTF will be drawn withanti-
aliasing turned on.

Fonts are generally specified with three parameters

1 Fontfamily
2 Fontstyle
3 Fontsize

In the call to method SetFont(). If no specified style is dsupplied then the style will default to normal
style (FS_STYLE) , size has default value of 12pt.

Built in bitmapped fonts
Built in fonts are chosen by using one of the font families

?? FF_FONTO (small size, does not support bold style)
?? FF_FONTL1 (normal size)
?? FF_FONT2 (large size)

Built in fonts only supports style FS_NORMAL and FS_BOLD (and in the case of FF_FONTO only
FS NORMAL) trying to specify an unsupported combination for built in fonts will not give an error
but will have no effect.

Note: To support backward compatibility with pre-1.2 bitmap fonts might also be specified with
FONTO, FONT1, FONT2 (note the missing prefix FF_). However these specifications are deprecated
as of 1.2. And usage of these will be acritical error in the next major release. It is strongly suggested
that you use the new naming conventions since that is designed to harmonise with the TTF support.

The size parameter has no meaning for built in fonts and will be ignored. The sizeisimplicitly set by
choosing the corresponding font family .

Some examples of how to specify the built in fonts

Set Font (FF_FONT1, FS_BOLD) ;

Set Font (FF_FONT1, FS BOLD, 12); /] Size 12 is ignored
Set Font (FONT1) ; /| Deprecat ed!
Set Font (FF_FONT2) ; /1 Use built in FONT1 using default style.

Set Font (FF_FONTO, FS BOLD); // FONTO does not support bold style, will be
i gnor ed

True Type Fonts
Before you can start using True Type Fonts you need to make sure that

1. You have downloaded the TTF files. Due to it's size they are in a separate package from the
JpGraph script code.

2. TheTTF_DI R constant in jpgraph.php points to the directory where the font files may be found.

3. Youinstalation of PHP supports TTF (most should do)

By default JpGraph will look for fontsin directory “. / TTF/ "

In JpGraph 1.2 the font families and styles supported are listed in Table 2.

Font family Font style
PHP Constant Real name FS_NORMAL | FS_BOLD | FS BOLDITALIC | FS I TALIC

FF_COURI ER | Courier new & & &

FF_VERDANA [Verdana Yt
FF_TI MES Times New Roman &
FF_HADWRT Lucida Handwriting &5
FF COM C Comic Sans &
FF_AR AL Arial &
FF_BOOK Book Antiqua &

Table 2 Available combination of TTF font families and styles

The use of aanillegal combination will give a runtime error indicating the type of problem, e.g. “Style
not supported for font family”. On additional thing to keep in mind when designing graphsis that even
though TTF may look more appealing from an aesthetic point of view they are much more time
consuming to render and also involves one additional disk access.

Some examples:

Set Font (FF_COURI ER) ;

Set Font (FF_COURI ER, FS_BOLD) ;
Set Font (FF_COM C, FS_BOLD, 16) ;

/1 Courier nornal

12 points

/] Courier bold 12 points
// Comic Sans Serif,

bol d, 16 points

Adding new TTF fonts

If you have a particular favourite font which doesn’t come as default it is quite easy to add that font to

JpGraph as an extension. There are basically 3 things you need to do:

1. Getthe TTFfile(s) and add it to your font directory. Y ou need separate files for each of the styles
you want to support. These different files uses the following naming conventions:

Normal font file

Bold font file
Bold itdic file
Italicfile

=<basefilename>

= <basefilename>"bd”
= <basefilename>"bi”
=<basefilename>"i"

2. Define anew constant FF_xxxxx in jpgraph.php which names your font (at the top of the file)

3. Update Class TTF constructor in jpgraph.php with the mapping between your new constant and

the <basefilename>

That's it!

1.5 Using Anti-Aliasing

From version 1.2 JpGraph supports drawing of anti-aliased lines. There are a few caveats in order to
use thiswhich is discussed in this section.

Note that anti-alising will not be used for either horizontal, vertical or 45 degree lines since they are by
their nature are sampled at adequate rate.

Enabling anti-aliased lines
Anti-aliased lines are enabled by calling the method SetAntiAliasing() in the Image class, so for
example you would normally make the call

$gr aph- >i ng- >Set Ant i Al i asi ng()

to enable this feature. The anti-aliasing for lines works by “smoothing” out the edges on the line by
usinga progressive scale of colors interpolated between the background color and the line color.

Note: The algorithm used is quite simple. It would be possible to achieve even better result by doing

somereal 2D signal processing. However it is my view that doing real time 2D signal processing on a
WEB server would be madness so | deliberately kept it simple. To achieve best visual result always use
adark line color on alight background.

Result 28081 Result 2881
B Target I B Target |
Jan Jan
00
Feb May . May
Mar Apr Mar Apr
Generated in: 0.231s Generated in: 1.981s

Figure 4. Spider graph with and without anti -aliasing enabled.

An example will show that this, quite simple algorithm, gives a reasonable good result. Figure 3 shows
a spider graph with ant without anti-aliasing. One thing to keep in mind when deciding to use antk
dliasing isthat it could have a potentially dramatic effect on the time it takes to generate the image
(compare 0.2s with 2.0, afactor of ten!) (the code for this particular spider graph might be found as
spiderex6.php in the Examples directory, (you might want to see how much faster your machineisto
my old server, but hey it's a seven year old machine sitting in my basement and doubling as a firewall
aswell)

Anti-aliased “gotchas”
There are aso a couple of potential limitations (or gotchas) you probably would like to keep in mind
when using anti-aliased lines

1. Anti-aiaseslines are much slow er then the normal lines, roughly 5 times slower per line.
Remember that the whole line-drawing agorithm is implemented in PHP since the underlying
graph library (GD) doesn’t support anti-aliased lines.

2. Anti-aliased lines uses up more of the available color-palette. The exact number of colors used is
dependent on the line-angle, a near horizontal or near vertical line uses more colors (number of
lines with different angles uses more colors). Hence it might not be possible to use anti-aliasing
with color -gradient fill since the number of available colors in the palette might not be enough. A
normal palette can keep around 256 colors (I’ m not 100% sure of the exact format used in the JPG,
PNG, or GIF standards)

3. Anti-aliased lines will ignore the line width specified. They will always have a width of roughly 1.

1.6 JpGraph global defines

In order to control certain behaviours of the library there are a number of DEFINE’s at the top of the
file ‘jpgraph.php’. Their purposes are briefly discussed below. The default values for all these constants
should be fine for most users of the library. However, “power-users’ might want to tweak these, hence

this description.

Constant Default value Description

ERR_DEPRECATED Fal se Should the use if deprecated functions and
vdues give a fatal runtime error?

BRAND_TI'M NG Fal se Should the time taken to generate an image be

“branded” in the lower left corner of the image?

BRAND_TI ME_FORMAT | “CGenerated in: 01.3fs”

The actual format string for the time branding.

READ_CACHE True

Should JpGraph first look in the cache to see if
the image has already been generated?

CACHE DI R “. /] pgraph_cache”

USE_BRESENHAM Fal se

Location of cache directory. Note this directory
must be writablefor PHP.

Should a PHP implementation of the
Bresenhams's circle algorithm be used instead
of the built in GD Arc() drawing routine?
(Makes circles look aesthetically better in some
few cases— the drawback being that do circles
in PHP are slower then native GD)

TTF_DR ottt

Location for TTF fonts

DEFAULT_GFORMAT “aut 0”

Which graphic format should be used (auto,
ipg, gif, png) If thisvalueis set to “auto” then
the best available format will automatically be
chosen. The preferred order is “png,gif,jpg”.

1.7 Drawing arbitrary graphic shapes using dummy graphs

Disclaimer: Thisis an unsupported part of JpGraph.

To make it easy to try out arbitrary graphic drawings with all the normal support of JpGraph (like
caching, anti-aliasing etc) you can crate a dummy graph. This will in affect give you a canvas where

you can use all the drawing primitives in the Image class.

Asusual you need to include both jpgraph.php and also the “dummy” extension “jpgraph_dummy.php”

An example to draw a simple line would be

#i ncl ude <j pgraph. php>
#i ncl ude <j pgr aph_dunmy. php>

$graph = new Dumy G aph(300, 200) ;

$gr aph- >i ng- >Set Col or (“red”);
$gr aph- >i ng- >Li ne(10, 10, 100, 100) ;

$gr aph- >St r oke() ;

1.8 Utility scripts
Disclaimer: Thisisan unsupported part of JpGraph.

JpGraph 1.2 comes with two utility script to help with color selection and to automatically generate a
test page of images. Please note that thisis only tools | use myself which | thought might be useful for
someone else. They are not supported in any shape or form!

Automatic generation of all test images (test-suit)

Running the script “testsuit_jpgraph.php” will generate an index list of all *.php filesin the current
directory. Thisis useful if you run this script from the “Examples’ directory. It will then generate an
index list with alink to all the example images. Thisisthe tool used to manage all regression tests
internally in the development of JpGraph.

This script may also be called with a parameter “style” asin
“testsuit_jpgraph. php?styl e=1"

or

“testsuit_jpgraph. php?styl e=2"

In the latter case (st y| e=2) the links will be replaced by the actual images. Y ou may then visually
inspect all the generated images.

Color selection and upcoming support for color themes

Running the script “gencolorchart.php” will generate (by default in the cache directory) a number of
images with color samples and also a theme page. Running the script should generate the following
output:

JpGraph color chart

Generating color chart images ...
1. .Jjpgraph_cache/color_chart01.gif
2. Jipgraph_cache/color_chart02.gif
3. Jjpgraph_cache/color_chart03.gif
4. Jipgraph_cache/color_chart04.gif
Generating color chart index page.

Generating themes...
1. ./jpgraph_cache/themeQ1.gif [24 colors in theme 'earth']
2. Jipgraph_cache/theme02.gif [19 colors in theme 'pastel’]
3. Jjpgraph_cache/theme03.gif [15 colors in theme ‘water']
4. [/ipgraph_cache/themeO4.gif [11 colors in theme 'sand’]
Generating theme index page.

Work donein: 3.64 seconds.

See Colorchart
See Index of themes

Figure 5. Output after running gencolorchart.php

The “Colorchart” is simple a page with all the named colors available in JpGraph. You can see all the
colors by following the link “Colorchart” at the bottom of the page. The reason for braking up the
colorsin separate images is just the fact that the maximum number of colorsin one image is limited by
the palette size.

Note: Thisis agood example of the inefficiency of the GIF format as compared to PNG. Each of the
above generated GIF images for the color charts are roughly 100K while the corresponding images
generated as PNG are only around 13K in size.

The “themes” index is just a collection of colors that make up a certain theme, i.e. “earth”, “pastel” etc.
Themes are an upcoming feature in JpGraph 1.3. This utility was just intended to help meto easily
view and pick what colors are/should be present in a certain theme. By using a certain theme your
graph will automatically draw colors from that theme, so for example all the default colors for the pie
slicesin a pie graph will be taken from the theme. Please note that the selection of colorsin a specific
theme is based on my personal judgement and may not agree with you. If you have additional themes
you would like to use please send me a note on jpgraph@aditus.nu

As an example the “earth” (a“professiona” looking color theme) have the following tentatively

composition:

22:hlack

45 :chartreuzed

]

F7darkolivegreens

141 :grays

346 isalmond

[]

424 iwheat3

49:chocolatel

119:dodgerblued

168:khakiz

F85itanl

10 aguanarined

G2 1cuand

120:eggplant

180 : lemonchiffonZ

g9:darkred

]

34 thur lywoodd3

63 idarkblus

134 :goldenrodl

209 :lightsalmonl

430 1yl lows

40 icadethlued

Tddarkolivegreen

[]

136 :goldenrod3

215:1lightskyblued

Figure 6. The colors in the "earth" theme (subject to change for 1.3!).

As opposed to the more colorful “pastel”-theme shown below

22:hlack

]

58 :1cyan

]

125:gold

]

F31:rosybrown

424 ;wheatd

66 darkgoldenrodl

147 :grau?

337 royalbluel

27 thrownl

79:darkorange

152 thotpinkl

405 tomatol

]

38 icadethluez

105 :deeppinkl

230 imagental

415:vialetred

4z :chartreusel

110 :deepskybluel

2d0 imediumarchid

Figure 7. The colors in the "pastel" theme (subject to change fror 1.3!)

	Introduction
	1.1 Version
	1.2 Features
	1.3 Planned future addition
	1.4 Known bugs and omissions
	1.5 Acknowledgements
	1.6 Implementing an OO library in PHP4
	1.7 Getting the latest version
	1.8 Reporting bugs and suggested improvements
	1.9 Software License

	Quick Start
	1.1 Generating images with PHP
	Line graphs
	1.2 A first example
	1.3 Adding plot marks to line graphs
	1.4 Adding several plots to the same graph
	1.5 Adding a second Y-scale
	1.6 Adding a legend to the plot
	1.7 Using the "Step style" to render line plots
	1.8 Using logarithmic scale
	1.9 Using different combination of scales
	1.10 Adding more gridlines to the plot
	1.11 Specifying the labels for X-axis
	1.12 Adjusting the ticks on a text scale
	1.13 Using filles line graphs
	1.14 Using accumulated line graphs

	Bar Graphs
	1.15 Using elementary bar graphs
	1.16 Adjusting the width of the bars
	1.17 Using grouped bar graphs
	1.18 Using accumulated bar graphs
	1.19 Using grouped accumulated bar graphs

	Error Plots
	1.20 Using error plots
	1.21 Using line error plots
	1.22 Combining different types of plots
	1.23 Adding text to the graph

	Scatter plots
	1.24 Using scatter plots
	1.25 Using impuls scatter plots

	Pie Graphs
	1.26 Using Pie Plots
	1.27 Changing size and position for the pie chart
	1.28 Adding several pie charts to the same graph
	1.29 Additional modifications to pie plots

	JpGraph Reference
	1.1 Conventions
	1.2 Class overview
	1.3 Public Class references
	6.3.1 Class Graph
	6.3.2 Class Axis
	6.3.3 Class Ticks
	6.3.4 Class Text
	6.3.5 Class Grid
	6.3.6 Class LinearTicks
	6.3.7 Class LinearScale
	6.3.8 Class LogTicks
	6.3.9 Class LogScale
	6.3.10 Class Legend
	6.3.11 Class LinePlot
	6.3.12 Class AccLinePlot
	6.3.13 Class PlotMark
	6.3.14 Class BarPlot
	6.3.15 Class GroupBarPlot
	6.3.16 Class AccBarPlot
	6.3.17 Class ErrorPlot
	6.3.18 Class Plot
	6.3.19 Class ErrorLinePlot
	6.3.20 Class SpiderGraph
	6.3.21 Class SpiderAxis
	6.3.22 Class SpiderPlot
	6.3.23 Class SpiderGrid
	6.3.24 Class ScatterPlot
	6.3.25 Class PieGraph
	6.3.26 Class PiePlot
	6.3.27 Class ImgStreamCache
	6.3.28 Class Image
	6.3.29 Class TTF
	6.3.30 Class Gradient
	6.3.31 Class RGB
	6.3.32 Class FontProp
	6.3.33 Class RotImage

	Manifest constants
	JpGraph Class Hierarchy
	Specifying Fonts
	Using Spider Plots
	1.1 Introduction
	1.2 Creating a simple spider graph
	1.3 Controlling size and position of plot
	1.4 Specifying titles for the axis and legends for plots
	1.5 Specifying gridlines
	1.6 Setting background color and frame
	1.7 Adding several plots to a spider graph

	Using the cache mechanism and other performance related questions
	1.1 Performance considerations
	1.2 Using the cache mechanism

	Advanced Features of JpGraph
	1.1 Using grace percentage on scales
	1.2 Timing the generation of graphs
	1.3 Using color gradient fill
	1.4 Specifying fonts
	1.5 Using Anti-Aliasing
	1.6 JpGraph global defines
	1.7 Drawing arbitrary graphic shapes using dummy graphs
	1.8 Utility scripts

